Abstract

Higher-order (up to eighth) temporal moments to characterize non-Gaussian picosecond laser pulses were measured in a laboratory-simulation experiment for laser communication through multiple-scattering media. A technique employing deconvolution of higher-order moments (taking into account the impulse response of the detector and sampling system) is described to determine the true moments from the observed sampling scope traces of the pulse shapes. Measuring the broadening of the original pulses (~20-ps pulse width) generated with a single spatial mode GaAlAs laser diode by current modulation gain switching method, the temporal moments of order n = 2–8 were analyzed as a function of optical depth τ of the multiple-scattering medium (consisting of latex spheres suspended in water) (5.5 ≤ τ ≤ 10.31) and receiver’s field of views (FOV) ranging from 0.503 to 2.1°. Higher-order temporal moments curves are presented as a function of both optical depth and FOV showing the general trend of the moments initially to rise quickly and finally to attain saturation or limiting values. A simple empirical relationship of a polynomial function of the order of 3 is obtained to express the broadened pulse width (n = 2) in the range of optical depth and FOV considered here. The results described in this paper clearly indicate the significance of the contribution of the longer part of the non-Gaussian tails of the broadened pulses to practical design problems in all-weather atmospheric optical communications.

© 1986 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lidar depolarization from multiple scattering in marine stratus clouds

Kenneth Sassen and Richard L. Petrilla
Appl. Opt. 25(9) 1450-1459 (1986)

Separation and analysis of forward scattered power in laboratory measurements of light beam transmittance through a turbid medium

E. Battistelli, P. Bruscaglioni, A. Ismaelli, L. Lo Porto, and G. Zaccanti
Appl. Opt. 25(3) 420-430 (1986)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription