Abstract

The soliton solution in a Kerr defocusing medium is obtained. This solution is essentially a dip in a uniform plane wave and is thus called a dark soliton. This solution is then used to supply a qualitative explanation of the optical branching effect, which has been observed recently in a photorefractive slab waveguide.

© 1987 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Oblique interactions of dark spatial solitons in self-defocusing media

Guoxiang Huang and Manuel G. Velarde
J. Opt. Soc. Am. B 14(11) 2850-2855 (1997)

Bright spatial solitons in defocusing Kerr media supported by cascaded nonlinearities

Ole Bang, Yuri S. Kivshar, and Alexander V. Buryak
Opt. Lett. 22(22) 1680-1682 (1997)

Nonparaxial dark solitons in optical Kerr media

Alessandro Ciattoni, Bruno Crosignani, Shayan Mookherjea, and Amnon Yariv
Opt. Lett. 30(5) 516-518 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription