Abstract

A simple analytical model is developed for the evaluation of interfacial shearing stress at the glass fiber surface in dual-coated optical fiber specimens subjected to tension. The analysis has been performed for pull-out testing and in situ evaluation of Young’s (shear) modulus of the primary coating material and is aimed at assessment of the effect of the materials properties and the specimen’s geometry on the magnitude and distribution of interfacial shearing stress. It is shown that the longitudinal distribution of this stress is nonuniform and that, for the given specimen’s length, its maximum value increases with a decrease in the thickness of the primary coating. It is concluded that, while currently used 1-cm-long specimens with approximately 30-μm-thick primary coatings are acceptable, shorter specimens (say, 5 mm long) are expected to result in more stable experimental data. The results obtained can be useful for comparing the adhesive strength of the primary coating material in fibers of different lengths and with different coating designs, as well as for the evaluation of Young’s (shear) modulus of this material from the measured axial displacement of the glass fiber.

© 1993 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (71)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription