Abstract

A technique, firmly based on a development from ray optics, is presented for calculating the loss due to the finite sizes of curved mirrors when these form an unstable optical resonator. If paraxial rays launched within such a resonator are confined near the resonator axis, the resonator is termed stable; otherwise it is termed unstable, and is known to have high losses. Siegman has recently presented a geometrical method, brilliantly constructed ad hoc, for calculating these losses in unstable resonators, and indicated where these might be advantageous in laser application. The ray optical theory presented here, which employs the concept of ray modes in an equivalent beam waveguide, is shown to yield results equivalent to those of Siegman for all cases considered by him. However, being derived from conventional ray optics, the validity of the formulas is independently established, and these formulas are immediately applicable to re-entrant resonators and resonators containing inhomogeneous media. The fractional loss per resonator pass is equal to 1 − |λ2|, where |λ2| this 1 is an eigenvalue of the transfer matrix T, representing the corresponding ray transformation.

© 1966 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rays and Ray Envelopes within Stable Optical Resonators Containing Focusing Media

Noritaka Kurauchi and Walter K. Kahn
Appl. Opt. 5(6) 1023-1029 (1966)

Unstable Optical Resonators

A. E. Siegman
Appl. Opt. 13(2) 353-367 (1974)

Optical Resonators in the Unstable Region

S. R. Barone
Appl. Opt. 6(5) 861-863 (1967)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (69)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription