Abstract

We propose a tomographic method for point source inline holographic microscopy. By recording a set of holograms at different illumination angles, shadowing effects are eliminated resulting in three-dimensional images with the same precision at the micrometer-scale in all directions. The advantage of our tomographic approach is that it works for both absorbing and phase objects, regardless of the change of refractive index at interfaces. We develop the method with computer simulations and demonstrate its strength by presenting experimental results for micrometer-sized polystyrene beads and a cotton fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy

M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg
Appl. Opt. 51(10) 1503-1515 (2012)

Cell shape identification using digital holographic microscopy

Johan Zakrisson, Staffan Schedin, and Magnus Andersson
Appl. Opt. 54(24) 7442-7448 (2015)

Digital in-line holographic microscopy

Jorge Garcia-Sucerquia, Wenbo Xu, Stephan K. Jericho, Peter Klages, Manfred H. Jericho, and H. Jürgen Kreuzer
Appl. Opt. 45(5) 836-850 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription