Abstract

This paper presents a temperature evaluation method by means of high-speed, visible light digital camera visualization and its application to the mineral wool production process. The proposed method adequately resolves the temperature-related requirements in mineral wool production and significantly improves the spatial and temporal resolution of measured temperature fields. Additionally, it is very cost effective in comparison with other non-contact temperature field measurement methods, such as infrared thermometry. Using the proposed method for temperatures between 800°C and 1500°C, the available temperature measurement range is approximately 300 K with a single temperature calibration point and without the need for camera setting adjustments. In the case of a stationary blackbody, the proposed method is able to produce deviations of less than 5 K from the reference (thermocouple-measured) temperature in a measurement range within 100 K from the calibration temperature. The method was also tested by visualization of rotating melt film in the rock wool production process. The resulting temperature fields are characterized by a very good temporal and spatial resolution (18,700 frames per second at 128pixels×328pixels and 8000 frames per second at 416pixels×298pixels).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical measurement of high-temperature melt flow rate

Benjamin Bizjan, Brane Širok, and Jinpeng Chen
Appl. Opt. 57(15) 4202-4210 (2018)

High-speed two-camera imaging pyrometer for mapping fireball temperatures

John M. Densmore, Barrie E. Homan, Matthew M. Biss, and Kevin L. McNesby
Appl. Opt. 50(33) 6267-6271 (2011)

High-speed phase-shifting interferometry using triangular prism for time-resolved temperature measurement

Eita Shoji, Atsuki Komiya, Junnosuke Okajima, Hiroshi Kawamura, and Shigenao Maruyama
Appl. Opt. 54(20) 6297-6304 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription