Abstract

Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bulk optical metamaterials assembled by microfluidic evaporation

Alexandre Baron, Antonio Iazzolino, Kévin Ehrhardt, Jean-Baptiste Salmon, Ashod Aradian, Vasyl Kravets, Alexander N. Grigorenko, Jacques Leng, Aurélie Le Beulze, Mona Tréguer-Delapierre, Miguel A. Correa-Duarte, and Philippe Barois
Opt. Mater. Express 3(11) 1792-1797 (2013)

A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles

José Dintinger, Stefan Mühlig, Carsten Rockstuhl, and Toralf Scharf
Opt. Mater. Express 2(3) 269-278 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Sihvola, “Metamaterials: a personal view,” Radioengineering 18, 90–94 (2009).
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  3. V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
    [Crossref]
  4. S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
    [Crossref]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref]
  6. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
    [Crossref]
  7. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
    [Crossref]
  8. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
    [Crossref]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [Crossref]
  10. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
    [Crossref]
  11. W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
    [Crossref]
  12. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
    [Crossref]
  13. W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).
  14. S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
    [Crossref]
  15. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
    [Crossref]
  16. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  17. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref]
  18. G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” in Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences (2006), pp. 3027–3059.
  19. J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [Crossref]
  20. Y. M. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4, 5277–5292 (2012).
    [Crossref]
  21. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [Crossref]
  22. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
    [Crossref]
  23. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  24. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
    [Crossref]
  25. K. B. Alici, and E. Özbay, “Radiation properties of a split ring resonator and monopole composite,” Phys. Status Solidi B 244, 1192–1196 (2007).
    [Crossref]
  26. J. Fontana and B. R. Ratna, “Highly tunable gold nanorod dimer resonances mediated through conductive junctions,” Appl. Phys. Lett. 105, 011107 (2014).
    [Crossref]
  27. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [Crossref]
  28. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  29. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [Crossref]
  30. H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
    [Crossref]
  31. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [Crossref]
  32. S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
    [Crossref]
  33. R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
    [Crossref]
  34. V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
    [Crossref]
  35. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [Crossref]
  36. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
    [Crossref]
  37. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
    [Crossref]
  38. A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
    [Crossref]
  39. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
    [Crossref]
  40. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
    [Crossref]
  41. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
  42. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  43. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  44. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref]
  45. L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).
  46. J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
    [Crossref]
  47. Z. Jakšić, S. Vuković, J. Matovic, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials 4, 1–36 (2010).
  48. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [Crossref]
  49. H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
    [Crossref]
  50. C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).
  51. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [Crossref]
  52. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).
    [Crossref]
  53. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
    [Crossref]
  54. L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).
  55. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
    [Crossref]
  56. J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” in Proceedings of the National Academy of Sciences of the United States of America (2011), pp. 11327–11331.
  57. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
    [Crossref]
  58. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
    [Crossref]
  59. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
    [Crossref]
  60. K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5, 1600–1630 (2009).
    [Crossref]
  61. T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
    [Crossref]
  62. J. Fontana, J. Naciri, R. Rendell, and B. R. Ratna, “Macroscopic self-assembly and optical characterization of nanoparticle-ligand metamaterials,” Adv. Opt. Mater. 1, 100106 (2013).
  63. A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
    [Crossref]
  64. X. Ye, J. Chen, B. T. Diroll, and C. B. Murray, “Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy,” Nano Lett. 13, 1291–1297 (2013).
    [Crossref]
  65. A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nano 2, 435–440 (2007).
    [Crossref]
  66. S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).
  67. R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
    [Crossref]
  68. B. van der Zande, G. Koper, and H. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. 103, 5754–5760(1999).
    [Crossref]
  69. X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
    [Crossref]
  70. J. P. Fontana, Self-assembly and Characterization of Anisotropic Metamaterials (Kent State University, 2011), p. 162.
  71. K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
    [Crossref]
  72. O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
    [Crossref]
  73. M. Wang, L. He, S. Zorba, and Y. Yin, “Magnetically actuated liquid crystals,” Nano Lett. 14, 3966–3971 (2014).
    [Crossref]
  74. S. Umadevi, X. Feng, and T. Hegmann, “Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods,” Adv. Funct. Mater. 23, 1393–1403 (2013).
    [Crossref]
  75. X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
    [Crossref]
  76. Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26, 7178–7184 (2014).
  77. Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
    [Crossref]
  78. W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
    [Crossref]
  79. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
  80. A. R. Tao, “Metamaterials: metamaterials go gattaca,” Nat. Photonics 8, 6–8 (2013).
    [Crossref]
  81. N. Engheta and A. Alu, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
    [Crossref]
  82. J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
    [Crossref]
  83. E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
    [Crossref]
  84. S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
    [Crossref]
  85. K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).
  86. S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
    [Crossref]
  87. Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
    [Crossref]
  88. J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
    [Crossref]
  89. A. Wen, R. Podgornik, G. Strangi, and N. Steinmetz, “Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials,” Rend. Fis. Acc. Lincei, 1–13 (2015).
    [Crossref]
  90. A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
    [Crossref]
  91. A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
    [Crossref]
  92. A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40, 2537–2540 (2015).
    [Crossref]
  93. A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32, 020604 (2014).
    [Crossref]
  94. J. T. McGinley, I. Jenkins, T. Sinno, and J. C. Crocker, “Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions,” Soft Mater. 9, 9119–9128 (2013).
    [Crossref]
  95. N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
    [Crossref]
  96. D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
    [Crossref]

2015 (7)

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref]

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40, 2537–2540 (2015).
[Crossref]

2014 (16)

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32, 020604 (2014).
[Crossref]

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
[Crossref]

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26, 7178–7184 (2014).

M. Wang, L. He, S. Zorba, and Y. Yin, “Magnetically actuated liquid crystals,” Nano Lett. 14, 3966–3971 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
[Crossref]

J. Fontana and B. R. Ratna, “Highly tunable gold nanorod dimer resonances mediated through conductive junctions,” Appl. Phys. Lett. 105, 011107 (2014).
[Crossref]

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

2013 (13)

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

S. Umadevi, X. Feng, and T. Hegmann, “Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods,” Adv. Funct. Mater. 23, 1393–1403 (2013).
[Crossref]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
[Crossref]

J. Fontana, J. Naciri, R. Rendell, and B. R. Ratna, “Macroscopic self-assembly and optical characterization of nanoparticle-ligand metamaterials,” Adv. Opt. Mater. 1, 100106 (2013).

X. Ye, J. Chen, B. T. Diroll, and C. B. Murray, “Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy,” Nano Lett. 13, 1291–1297 (2013).
[Crossref]

A. R. Tao, “Metamaterials: metamaterials go gattaca,” Nat. Photonics 8, 6–8 (2013).
[Crossref]

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[Crossref]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

J. T. McGinley, I. Jenkins, T. Sinno, and J. C. Crocker, “Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions,” Soft Mater. 9, 9119–9128 (2013).
[Crossref]

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

2012 (9)

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
[Crossref]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Y. M. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4, 5277–5292 (2012).
[Crossref]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

2011 (5)

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

2010 (7)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Z. Jakšić, S. Vuković, J. Matovic, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials 4, 1–36 (2010).

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
[Crossref]

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

2009 (11)

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

A. Sihvola, “Metamaterials: a personal view,” Radioengineering 18, 90–94 (2009).

S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5, 1600–1630 (2009).
[Crossref]

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[Crossref]

N. Engheta and A. Alu, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
[Crossref]

2008 (5)

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).
[Crossref]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

2007 (8)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref]

K. B. Alici, and E. Özbay, “Radiation properties of a split ring resonator and monopole composite,” Phys. Status Solidi B 244, 1192–1196 (2007).
[Crossref]

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nano 2, 435–440 (2007).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

2006 (3)

K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
[Crossref]

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

2005 (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

1999 (1)

B. van der Zande, G. Koper, and H. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. 103, 5754–5760(1999).
[Crossref]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

Adams, S. M.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Alaeian, H.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Alici, K. B.

K. B. Alici, and E. Özbay, “Radiation properties of a split ring resonator and monopole composite,” Phys. Status Solidi B 244, 1192–1196 (2007).
[Crossref]

Alivisatos, A. P.

K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
[Crossref]

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Alu, A.

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Aronzon, D.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Atwater, H. A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
[Crossref]

Baca, A. J.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Baldauf, J. S.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
[Crossref]

Bao, J.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Bao, K.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Barrow, S. J.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
[Crossref]

Bartal, G.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” in Proceedings of the National Academy of Sciences of the United States of America (2011), pp. 11327–11331.

Baumberg, J. J.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Bezares, F. J.

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

Bigioni, T. P.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

Bishop, K. J. M.

K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5, 1600–1630 (2009).
[Crossref]

Biswas, S.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Blaber, M. G.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Bogart, G. R.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).
[Crossref]

Bonakdar, A.

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40, 2537–2540 (2015).
[Crossref]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32, 020604 (2014).
[Crossref]

Bosman, M.

H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref]

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

Braun, P.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Brown, A. M.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
[Crossref]

Brown, D.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Brown, R. L.

Cai, W.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

Cai, W. S.

Cain, T.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Caldwell, J. D.

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

Campbell, M. G.

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26, 7178–7184 (2014).

Campione, S.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Capolino, F.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

Cargnello, M.

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

Carlson, A.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Chanda, D.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Chang, D. E.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Chang, W.-S.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Chen, E. R.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

Chen, H.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Chen, J.

X. Ye, J. Chen, B. T. Diroll, and C. B. Murray, “Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy,” Nano Lett. 13, 1291–1297 (2013).
[Crossref]

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
[Crossref]

Chettiar, U.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

Chettiar, U. K.

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Cole, R. M.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[Crossref]

Collins, J. W.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Corwin, E. I.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

Crocker, J. C.

J. T. McGinley, I. Jenkins, T. Sinno, and J. C. Crocker, “Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions,” Soft Mater. 9, 9119–9128 (2013).
[Crossref]

Crozier, K. B.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

Cui, Y. X.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Culbertson, J. C.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

Cunha, P. S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

De Rogatis, L.

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

Demir, H. V.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Demler, E. A.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Dexheimer, E.

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Dionne, J. A.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[Crossref]

Diroll, B. T.

X. Ye, J. Chen, B. T. Diroll, and C. B. Murray, “Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy,” Nano Lett. 13, 1291–1297 (2013).
[Crossref]

Dong, A.

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
[Crossref]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref]

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

Dressick, W. J.

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

Duan, H.

H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref]

Edward, B.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Engheta, N.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

N. Engheta and A. Alu, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref]

Enkrich, C.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Evans, J. S.

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26, 7178–7184 (2014).

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Fakhraai, Z.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

Fan, J. A.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

Fathipour, V.

Fedoruk, M.

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

Feng, X.

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

S. Umadevi, X. Feng, and T. Hegmann, “Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods,” Adv. Funct. Mater. 23, 1393–1403 (2013).
[Crossref]

Fernandez-Dominguez, A. I.

H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Ferrari, A. C.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
[Crossref]

Fontana, J.

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

J. Fontana and B. R. Ratna, “Highly tunable gold nanorod dimer resonances mediated through conductive junctions,” Appl. Phys. Lett. 105, 011107 (2014).
[Crossref]

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

J. Fontana, J. Naciri, R. Rendell, and B. R. Ratna, “Macroscopic self-assembly and optical characterization of nanoparticle-ligand metamaterials,” Adv. Opt. Mater. 1, 100106 (2013).

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

Fontana, J. P.

J. P. Fontana, Self-assembly and Characterization of Anisotropic Metamaterials (Kent State University, 2011), p. 162.

Fornasiero, P.

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

Fox, J. M.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

Franklin, D.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Fruhnert, M.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

Funston, A. M.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
[Crossref]

Furst, E. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gao, L.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

García de Abajo, F. J.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
[Crossref]

Gardner, D.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

Gerthsen, D.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Gombac, V.

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

Gonidec, M.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

Górecka, E.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref]

Govorov, A. O.

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

Grzelczak, M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref]

Grzybowski, B. A.

K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5, 1600–1630 (2009).
[Crossref]

Gucciardi, P. G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Guldin, S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Güney, D. Ö.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

Gupta, S.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Gwamuri, J.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

Halas, N. J.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Hartanto, S.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

Hastings, S. P.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

He, L.

M. Wang, L. He, S. Zorba, and Y. Yin, “Magnetically actuated liquid crystals,” Nano Lett. 14, 3966–3971 (2014).
[Crossref]

He, S. L.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

He, Y.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Hegmann, T.

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

S. Umadevi, X. Feng, and T. Hegmann, “Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods,” Adv. Funct. Mater. 23, 1393–1403 (2013).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Holmes-Cerfon, M. C.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Hur, K.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Ignatenko, M.

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

Jaeger, H. M.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

Jakšic, Z.

Z. Jakšić, S. Vuković, J. Matovic, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials 4, 1–36 (2010).

Jang, S. J.

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40, 2537–2540 (2015).
[Crossref]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32, 020604 (2014).
[Crossref]

Jang, Y. H.

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

Jarrett, J. W.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Jean-Remy, P.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

Jenkins, I.

J. T. McGinley, I. Jenkins, T. Sinno, and J. C. Crocker, “Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions,” Soft Mater. 9, 9119–9128 (2013).
[Crossref]

Jeong, H.

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

Johnson, J. E.

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

Jones, M. R.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Jones, P. H.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Karimi, E.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Khorashad, L. K.

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

Kikkawa, J. M.

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref]

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

Kim, Y.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Klimeck, G.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

Knappenberger, K. L.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Knight, M. W.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Koh, A. L.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[Crossref]

Koper, G.

B. van der Zande, G. Koper, and H. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. 103, 5754–5760(1999).
[Crossref]

Koschny, T.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Kosku Perkgoz, N.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Kotov, N. A.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Kuang, H.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Kulkarni, A.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Large, N.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Lee, B.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Lee, H.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

Lee, T.

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

Lekkerkerker, H.

B. van der Zande, G. Koper, and H. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. 103, 5754–5760(1999).
[Crossref]

Lewandowski, W.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref]

Li, C.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

Li, J. S.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Li, X.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Liedl, T.

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

Lin, X.-M.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

Linden, S.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Link, S.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Liu, D. R.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Liu, H. T.

K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
[Crossref]

Liu, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Liu, Q.

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26, 7178–7184 (2014).

Liu, Q. K.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Liu, X.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Liu, Y. M.

Y. M. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4, 5277–5292 (2012).
[Crossref]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Liu, Z. W.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]

Livenere, J.

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

Liz-Marzán, L. M.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
[Crossref]

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref]

Lorenzut, B.

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

Lukin, M. D.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Ma, W.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Mahajan, S.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[Crossref]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref]

Manoharan, V. N.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Marago, O. M.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
[Crossref]

Mastroianni, A.

K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
[Crossref]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

Matovic, J.

Z. Jakšić, S. Vuković, J. Matovic, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials 4, 1–36 (2010).

McGinley, J. T.

J. T. McGinley, I. Jenkins, T. Sinno, and J. C. Crocker, “Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions,” Soft Mater. 9, 9119–9128 (2013).
[Crossref]

McGinn, C. K.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

Melik, R.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Mieczkowski, J.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Milton, G. W.

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” in Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences (2006), pp. 3027–3059.

Mirkin, C. A.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Mohseni, H.

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40, 2537–2540 (2015).
[Crossref]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32, 020604 (2014).
[Crossref]

Montini, T.

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

Mori, T.

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

Mulvaney, P.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
[Crossref]

Murray, C. B.

X. Ye, J. Chen, B. T. Diroll, and C. B. Murray, “Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy,” Nano Lett. 13, 1291–1297 (2013).
[Crossref]

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
[Crossref]

Naciri, J.

J. Fontana, J. Naciri, R. Rendell, and B. R. Ratna, “Macroscopic self-assembly and optical characterization of nanoparticle-ligand metamaterials,” Adv. Opt. Mater. 1, 100106 (2013).

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Nealey, P. F.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Nemiroski, A.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

Nguyen, T. T.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

Nicorovici, N. A. P.

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” in Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences (2006), pp. 3027–3059.

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Nordlander, P.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

Obelleiro, F.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Padilla, W. J.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Pala, N.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

Palffy-Muhoray, P.

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

Park, S.-J.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Pearce, J. M.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Perez-Willard, R.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Pevnyi, M.

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

Phelps, J.

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

Podgornik, R.

A. Wen, R. Podgornik, G. Strangi, and N. Steinmetz, “Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials,” Rend. Fis. Acc. Lincei, 1–13 (2015).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Polman, A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Progler, C. J.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

Pustovit, V.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Puttlitz, C.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

Qian, Z.

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

Ragan, R.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

Ratna, B. R.

J. Fontana and B. R. Ratna, “Highly tunable gold nanorod dimer resonances mediated through conductive junctions,” Appl. Phys. Lett. 105, 011107 (2014).
[Crossref]

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

J. Fontana, J. Naciri, R. Rendell, and B. R. Ratna, “Macroscopic self-assembly and optical characterization of nanoparticle-ligand metamaterials,” Adv. Opt. Mater. 1, 100106 (2013).

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

Reed, M. A.

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

Rendell, R.

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

J. Fontana, J. Naciri, R. Rendell, and B. R. Ratna, “Macroscopic self-assembly and optical characterization of nanoparticle-ligand metamaterials,” Adv. Opt. Mater. 1, 100106 (2013).

Rendell, R. W.

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

Rezaei, M.

Rockstuhl, C.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref]

Rogers, J. A.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Roller, E.-M.

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

Ross, M. B.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Rushkin, I.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Ryan, K. M.

K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
[Crossref]

Rycenga, M.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Sampson, T.

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

Sarychev, A. K.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

Schade, N. B.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Schatz, G. C.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Schreiber, R.

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

Senesi, A. J.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

Sheikholeslami, S. N.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Sheldon, M. T.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
[Crossref]

Shen, X.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Shigeta, K.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

Shimizu, Y.

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

Shvets, G.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Sihvola, A.

A. Sihvola, “Metamaterials: a personal view,” Radioengineering 18, 90–94 (2009).

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Sinno, T.

J. T. McGinley, I. Jenkins, T. Sinno, and J. C. Crocker, “Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions,” Soft Mater. 9, 9119–9128 (2013).
[Crossref]

Sinsermsuksakul, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nano 2, 435–440 (2007).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Smalyukh, I. I.

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26, 7178–7184 (2014).

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Soh, S.

K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5, 1600–1630 (2009).
[Crossref]

Solís, D. M.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
[Crossref]

Song, H.

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Sorensen, A. S.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Sorger, V. J.

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Sosa-Vargas, L.

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

Soto, C. M.

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

Soukoulis, C. M.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Stacy, A. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Stancil, K. A.

K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
[Crossref]

Stefik, M.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Steiner, U.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Steinmetz, N.

A. Wen, R. Podgornik, G. Strangi, and N. Steinmetz, “Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials,” Rend. Fis. Acc. Lincei, 1–13 (2015).
[Crossref]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Strangi, G.

A. Wen, R. Podgornik, G. Strangi, and N. Steinmetz, “Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials,” Rend. Fis. Acc. Lincei, 1–13 (2015).
[Crossref]

Sun, C.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

Sun, M.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Taboada, J. M.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

Tanaskovic, D.

Z. Jakšić, S. Vuković, J. Matovic, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials 4, 1–36 (2010).

Tao, A.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nano 2, 435–440 (2007).
[Crossref]

Tao, A. R.

A. R. Tao, “Metamaterials: metamaterials go gattaca,” Nat. Photonics 8, 6–8 (2013).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Turnage, E.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

Umadevi, S.

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

S. Umadevi, X. Feng, and T. Hegmann, “Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods,” Adv. Funct. Mater. 23, 1393–1403 (2013).
[Crossref]

Unal, E.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

Urban, A. S.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Urbas, A.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

Vaia, R.

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

Vaia, R. A.

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

Valentine, J.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

van de Groep, J.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
[Crossref]

van der Zande, B.

B. van der Zande, G. Koper, and H. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. 103, 5754–5760(1999).
[Crossref]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Vazquez-Guardado, A.

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

Vermant, J.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Vignolini, S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Volpe, G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
[Crossref]

Vora, A.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

Vora, P. M.

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
[Crossref]

Vukovic, S.

Z. Jakšić, S. Vuković, J. Matovic, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials 4, 1–36 (2010).

Wang, H.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Wang, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Wang, M.

M. Wang, L. He, S. Zorba, and Y. Yin, “Magnetically actuated liquid crystals,” Nano Lett. 14, 3966–3971 (2014).
[Crossref]

Wang, S.

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

Wang, Y.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Wegener, M.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Wei, X.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Wen, A.

A. Wen, R. Podgornik, G. Strangi, and N. Steinmetz, “Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials,” Rend. Fis. Acc. Lincei, 1–13 (2015).
[Crossref]

Whitesides, G. M.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

Wiesner, U.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Wilmer, C. E.

K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5, 1600–1630 (2009).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Witten, T. A.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

Wu, C.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

Xiao, S. M.

Xiong, Y.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]

Xu, C.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Xu, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

Yang, J. K.

H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref]

Yang, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nano 2, 435–440 (2007).
[Crossref]

Yang, X. D.

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” in Proceedings of the National Academy of Sciences of the United States of America (2011), pp. 11327–11331.

Yao, J.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” in Proceedings of the National Academy of Sciences of the United States of America (2011), pp. 11327–11331.

Ye, X.

X. Ye, J. Chen, B. T. Diroll, and C. B. Murray, “Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy,” Nano Lett. 13, 1291–1297 (2013).
[Crossref]

Yin, X. B.

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” in Proceedings of the National Academy of Sciences of the United States of America (2011), pp. 11327–11331.

Yin, Y.

M. Wang, L. He, S. Zorba, and Y. Yin, “Magnetically actuated liquid crystals,” Nano Lett. 14, 3966–3971 (2014).
[Crossref]

Young, K. L.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yuan, H. K.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

Yufa, N. A.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

Zhang, C.

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Zhang, H.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

Zhang, W.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Zhang, X.

Y. M. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4, 5277–5292 (2012).
[Crossref]

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” in Proceedings of the National Academy of Sciences of the United States of America (2011), pp. 11327–11331.

Zhao, Y.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Zheng, X. Y.

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

Zhou, J. F.

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Zhu, W.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

Zhu, Y.

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

Zorba, S.

M. Wang, L. He, S. Zorba, and Y. Yin, “Magnetically actuated liquid crystals,” Nano Lett. 14, 3966–3971 (2014).
[Crossref]

ACS Nano (4)

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref]

Z. Qian, S. P. Hastings, C. Li, B. Edward, C. K. McGinn, N. Engheta, Z. Fakhraai, and S.-J. Park, “Raspberry-like metamolecules exhibiting strong magnetic resonances,” ACS Nano 9, 1263–1270 (2015).
[Crossref]

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8, 11061–11070 (2014).
[Crossref]

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8, 7559–7570 (2014).
[Crossref]

Adv. Funct. Mater. (2)

S. Umadevi, X. Feng, and T. Hegmann, “Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods,” Adv. Funct. Mater. 23, 1393–1403 (2013).
[Crossref]

X. Feng, L. Sosa-Vargas, S. Umadevi, T. Mori, Y. Shimizu, and T. Hegmann, “Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π Interactions,” Adv. Funct. Mater. 25, 1180–1192 (2015).
[Crossref]

Adv. Mater (1)

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, and C. A. Mirkin, “Using DNA to design plasmonic metamaterials with tunable optical properties,” Adv. Mater 26, 653–659 (2014).

Adv. Mater. (2)

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26, 7178–7184 (2014).

C. Enkrich, R. Perez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005).

Adv. Opt. Mater. (2)

J. Fontana, J. Naciri, R. Rendell, and B. R. Ratna, “Macroscopic self-assembly and optical characterization of nanoparticle-ligand metamaterials,” Adv. Opt. Mater. 1, 100106 (2013).

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

Advan. Mater. (1)

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Advan. Mater. 24, OP23–OP27 (2012).

Advan. Opt. Mater. (1)

L. Gao, Y. Kim, A. Vazquez-Guardado, K. Shigeta, S. Hartanto, D. Franklin, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing,” Advan. Opt. Mater. 2, 256–261 (2014).

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Appl. Phys. Lett. (6)

J. Fontana and B. R. Ratna, “Highly tunable gold nanorod dimer resonances mediated through conductive junctions,” Appl. Phys. Lett. 105, 011107 (2014).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[Crossref]

J. Fontana, J. Livenere, F. J. Bezares, J. D. Caldwell, R. Rendell, and B. R. Ratna, “Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers,” Appl. Phys. Lett. 102, 201606 (2013).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106, 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

ChemSusChem (1)

L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, “Embedded phases: a way to active and stable catalysts,” ChemSusChem 3, 24–42 (2010).

J. Mater. Sci. (1)

X. Y. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites,” J. Mater. Sci. 47, 4914–4920 (2012).
[Crossref]

J. Phys. Chem. (1)

B. van der Zande, G. Koper, and H. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. 103, 5754–5760(1999).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32, 020604 (2014).
[Crossref]

Laser Phys. Lett. (1)

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49–55 (2006).
[Crossref]

Light Sci. Appl. (1)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).

Materials (1)

Z. Jakšić, S. Vuković, J. Matovic, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials 4, 1–36 (2010).

Metamaterials (1)

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).
[Crossref]

Nano Lett. (12)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

X. Ye, J. Chen, B. T. Diroll, and C. B. Murray, “Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy,” Nano Lett. 13, 1291–1297 (2013).
[Crossref]

H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, and J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref]

S. Biswas, X. Liu, J. W. Jarrett, D. Brown, V. Pustovit, A. Urbas, K. L. Knappenberger, P. F. Nealey, and R. A. Vaia, “Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles,” Nano Lett. 15, 1836–1842 (2015).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Lett. 6, 1479–1482 (2006).
[Crossref]

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, “DNA-Assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies,” Nano Lett. 15, 1368–1373 (2015).
[Crossref]

M. Wang, L. He, S. Zorba, and Y. Yin, “Magnetically actuated liquid crystals,” Nano Lett. 14, 3966–3971 (2014).
[Crossref]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13, 4399–4403 (2013).
[Crossref]

Nanoscale (1)

Y. M. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4, 5277–5292 (2012).
[Crossref]

Nat. Commun. (3)

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275 (2012).
[Crossref]

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref]

Nat. Mater. (7)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5, 265–270 (2006).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Nano (3)

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nano 6, 402–407 (2011).
[Crossref]

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nano 2, 435–440 (2007).
[Crossref]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nano 8, 807–819 (2013).
[Crossref]

Nat. Photonics (3)

A. R. Tao, “Metamaterials: metamaterials go gattaca,” Nat. Photonics 8, 6–8 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Nat. Phys. (1)

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Nature (6)

H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, “Observation of molecular orbital gating,” Nature 462, 1039–1043 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref]

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, “Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface,” Nature 466, 474–477 (2010).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Phys. Rev. Lett. (4)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110, 148303 (2013).
[Crossref]

Phys. Status Solidi B (1)

K. B. Alici, and E. Özbay, “Radiation properties of a split ring resonator and monopole composite,” Phys. Status Solidi B 244, 1192–1196 (2007).
[Crossref]

Radioengineering (1)

A. Sihvola, “Metamaterials: a personal view,” Radioengineering 18, 90–94 (2009).

Sci. Rep. (2)

W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 15114–15121 (2013).

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. Ö. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 44901 (2014).
[Crossref]

Science (11)

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346, 828–831 (2014).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466–1468 (1995).
[Crossref]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

Small (3)

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly,” Small 8, 2239–2249 (2012).
[Crossref]

K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5, 1600–1630 (2009).
[Crossref]

J. Fontana, W. J. Dressick, J. Phelps, J. E. Johnson, R. W. Rendell, T. Sampson, B. R. Ratna, and C. M. Soto, “Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly,” Small 10, 3058–3063 (2014).
[Crossref]

Soft Mater. (1)

J. T. McGinley, I. Jenkins, T. Sinno, and J. C. Crocker, “Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions,” Soft Mater. 9, 9119–9128 (2013).
[Crossref]

Other (4)

A. Wen, R. Podgornik, G. Strangi, and N. Steinmetz, “Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials,” Rend. Fis. Acc. Lincei, 1–13 (2015).
[Crossref]

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” in Proceedings of the National Academy of Sciences of the United States of America (2011), pp. 11327–11331.

J. P. Fontana, Self-assembly and Characterization of Anisotropic Metamaterials (Kent State University, 2011), p. 162.

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” in Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences (2006), pp. 3027–3059.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Scanning electron microscopy images of a 2 × 2 mm optical metasurfaces made using electron beam lithography. Reproduced with permission from Shalaev et al. [48]. (b) Transmission electron microscopy image of two plasmonic nanoprisms with nanometer interparticle spacing created using electron-beam lithography and lift-off techniques. Reproduced with permission from Duan et al. [49]. (c) Scanning electron microscope image of a 16 μm × 16 μm split-ring resonator array fabricated using focused ion beam lithography with resonances in the near-infrared regime. Reproduced with permission from Enkrich et al. [50]. (d) Scanning electron image of a layered fishnet structure consisting of alternating layers of 30 silver and 50 nm magnesium fluoride fabricated using focused ion beam lithography. Reproduced with permission from Valentine et al. [51].
Fig. 2.
Fig. 2. (a) Schematic of the nanotransfer printing process. (b) and (c) Scanning electron microscopy and photography images of the large-area metamaterial. Reproduced with permission from Chanda et al. [53] and Gao et al. [54].
Fig. 3.
Fig. 3. (a) (left) Schematic of binary nanocrystal superlattice growth and transfer process. (right) Transmission scanning microscopy images and model of the binary superlattices. Reproduced with permission from Dong et al. [63]. (b) (left) Photographs of a Langmuir–Blodgett trough containing silver nanoparticles confined to the air–fluid interface and (right) corresponding transmission microscopy images as a function of surface pressure. Reproduced with permission from Tao et al. [65]. (c) Schematic of block copolymer scaffold assembly of gyroidal metamaterials. Reproduced with permission from Vignolini et al. [66].
Fig. 4.
Fig. 4. (a) Switchable “pixel” of aligned gold nanorods in an organic suspension using external electric fields. The bottom part of the cuvette is red as a result of the nanorods aligning with the field (out of the page) and the top part is blue without the field applied. Reproduced with permission from Zheng et al. [69]. (b) Polarized optical microcopy images of lithographically patterned ferromagnetic Fe 3 O 4 nanorods between cross polarizers before (left) and after (right) shifting the transmission axis by 45°. Reproduced with permission from Wang et al. [73]. (c) Magnetic field aligned gold nanorods functionalized with liquid crystal ligands oriented planar (left) and hometropic (right). Reproduced with permission from Umadevi et al. [74]. (d) (left) Schematic representation of gold nanorods and lyotropic liquid crystal surfactants aligned using shear flow and magnetic fields. (right) Tunneling electron microscopy image of the aligned nanorods. Reproduced with permission from Liu et al. [77].
Fig. 5.
Fig. 5. (a) (upper left) Self-assembly schematic of the DNA nanospheres rings. (lower right) Transmission electron microscopy images of various rings produced using this approach. Reproduced with permission from Roller et al. [83]. (b) DNA mediated assembly schematic of 3D plasmonic nanoclusters. (lower left) Scanning electron microscopy image of a nanocluster. Reproduced with permission from Barrow et al. [84].
Fig. 6.
Fig. 6. (a) (top left) Schematic of the protein assembly of the plasmonic nanoclusters. (bottom left) Vials containing silver nanospheres coated with biotin (left), polystyrene nanospheres coated with streptavidin (center), and plasmonic nanocluster (right). (right side) Transmission electron microscopy images of the nanoclusters. Reproduced with permission from Sheikholeslami et al. [86]. (b) Schematic for the directed assembly of a 3D plasmonic nanocluster with icosahedral symmetry using genetically engineered viruses as scaffolds. (Left) Suspension of nanocluster backlight using white light. (Right) Representative nanocluster assemblies imaged with transmission electron microscopy. Reproduced with permission from Fontana et al. [88].

Metrics