Abstract

Sparse representation-based classification (SRC) has attracted increasing attention in remote-sensed hyperspectral communities for its competitive performance with available classification algorithms. Kernel sparse representation-based classification (KSRC) is a nonlinear extension of SRC, which makes pixels from different classes linearly separable. However, KSRC only considers projecting data from original space into feature space with a predefined parameter, without integrating a priori domain knowledge, such as the contribution from different spectral features. In this study, customizing kernel sparse representation-based classification (CKSRC) is proposed by incorporating kth nearest neighbor density as a weighting scheme in traditional kernels. Analyses were conducted on two publicly available data sets. In comparison with other classification algorithms, the proposed CKSRC further increases the overall classification accuracy and presents robust classification results with different selections of training samples.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images

Xiaoqing Wan and Chunhui Zhao
J. Opt. Soc. Am. A 34(6) 1011-1020 (2017)

Feature weighting algorithms for classification of hyperspectral images using a support vector machine

Bin Qi, Chunhui Zhao, and Guisheng Yin
Appl. Opt. 53(13) 2839-2846 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription