Abstract

We presented the first demonstration of a high-peak power few-nanosecond pulse 1342-nm Nd:YVO4 laser by the combination of cavity dumping and in-band pumping. The maximum average output power of 3.2 W with Gaussian TEM00 mode was obtained at the pulse repetition rate (PRR) of 10 kHz. The pulse width remained to be 4.7±0.1ns for the PRR from 2 to 10 kHz. The maximum pulse energy of 0.55 mJ was obtained at 2 kHz and the corresponding peak power was up to 117 kW. This is, to our knowledge, the shortest ns pulse width and the highest peak power for LD-pumped 1.3 μm TEM00 lasers with an active Q-switch device.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-repetition-rate and short-pulse-width electro-optical cavity-dumped YVO4/Nd:GdVO4 laser

Yufei Ma, Xudong Li, Xin Yu, Renpeng Yan, Rongwei Fan, Jiangbo Peng, Xinrui Xu, Yunchang Bai, and Rui Sun
Appl. Opt. 53(14) 3081-3084 (2014)

Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser with a planar cavity

Yung-Fu Chen, Y. P. Lan, and S. C. Wang
Opt. Lett. 25(14) 1016-1018 (2000)

Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width

Keming Du, Daijun Li, Hengli Zhang, Peng Shi, Xiaoyu Wei, and Robert Diart
Opt. Lett. 28(2) 87-89 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Yao, W. Hou, Y. Kong, L. Guo, L. Wu, R. Li, D. Cui, Z. Xu, Y. Bi, and Y. Zhou, “Double-end-pumped 11-W Nd:YVO4 cw laser at 1342  nm,” J. Opt. Soc. Am. B 22, 2129–2133 (2005).
    [Crossref]
  2. C. Lu, M. Gong, L. Huang, and F. He, “High-power high-repetition-rate acousto-optically Q-switched 1342  nm laser,” Appl. Phys. B 89, 285–289 (2007).
    [Crossref]
  3. A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
    [Crossref]
  4. K. Yang, S. Zhao, J. He, B. Zhang, C. Zuo, G. Li, D. Li, and M. Li, “Diode-pumped passively Q-switched and modelocked Nd:GdVO4 laser at 1.34  μm with V:YAG saturable absorber,” Opt. Express 16, 20176–20185 (2008).
    [Crossref]
  5. F. Liu, J. He, B. Zhang, J. Xu, X. Dong, K. Yang, H. Xia, and H. Zhang, “Diode-pumped passively Q-switched Nd:LuVO4 laser at 1.34  μm with a V3+:YAG saturable absorber,” Opt. Express 16, 11759–11763 (2008).
    [Crossref]
  6. P. Tidemand-Lichtenberg, J. Janousek, and P. Buchhave, “Synchronized Q-switching of 1064 and 1342  nm laser cavities using a V:YAG saturable absorber,” in Advanced Solid-State Photonics (Optical Society of America, 2004), p. B4.
  7. P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34  μm Nd:YxGd1-xVO4 laser with Co2+:LaMgAl11O19 saturable absorber,” Opt. Express 14, 7730–7736 (2006).
    [Crossref]
  8. W. Ge, H. Zhang, J. Wang, X. Cheng, M. Jiang, C. Du, and S. Yuan, “Pulsed laser output of LD-end-pumped 1.34  μm Nd:GdVO4 laser with Co:LaMgAl11O19 crystal as saturable absorber,” Opt. Express 13, 3883–3889 (2005).
    [Crossref]
  9. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
    [Crossref]
  10. H. C. Lai, A. Li, K. W. Su, M. L. Ku, Y. F. Chen, and K. F. Huang, “InAs/GaAs quantum-dot saturable absorbers for diode-pumped passively Q-switched Nd-doped 1.3-μm lasers,” Opt. Lett. 30, 480–482 (2005).
    [Crossref]
  11. Y. Zhao, Z. Wang, H. Yu, L. Guo, L. Chen, S. Zhuang, X. Sun, D. Hu, and X. Xu, “6.5-ns actively Q-switched Nd:YVO4 laser operating at 1.34  μm,” Chin. Opt. Lett. 9, 081401 (2011).
    [Crossref]
  12. L. McDonagh, R. Wallenstein, and R. Knappe, “47  W, 6  ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM00 Nd:YVO4 oscillator,” Opt. Lett. 31, 3303–3305 (2006).
    [Crossref]
  13. Y. F. Ma, J. W. Zhang, H. Li, and X. Yu, “High stable electro-optical cavity-dumped Nd:YAG laser,” Laser Phys. Lett. 9, 561–563 (2012).
    [Crossref]

2012 (1)

Y. F. Ma, J. W. Zhang, H. Li, and X. Yu, “High stable electro-optical cavity-dumped Nd:YAG laser,” Laser Phys. Lett. 9, 561–563 (2012).
[Crossref]

2011 (1)

2008 (2)

2007 (2)

C. Lu, M. Gong, L. Huang, and F. He, “High-power high-repetition-rate acousto-optically Q-switched 1342  nm laser,” Appl. Phys. B 89, 285–289 (2007).
[Crossref]

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

2006 (2)

2005 (3)

1997 (1)

Bi, Y.

Braun, B.

Buchhave, P.

P. Tidemand-Lichtenberg, J. Janousek, and P. Buchhave, “Synchronized Q-switching of 1064 and 1342  nm laser cavities using a V:YAG saturable absorber,” in Advanced Solid-State Photonics (Optical Society of America, 2004), p. B4.

Chen, L.

Chen, Y. F.

Cheng, X.

Cui, D.

Datta, P. K.

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

Dong, X.

Du, C.

Dutta, P. K.

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

Fluck, R.

Ge, W.

Gini, E.

Gong, M.

C. Lu, M. Gong, L. Huang, and F. He, “High-power high-repetition-rate acousto-optically Q-switched 1342  nm laser,” Appl. Phys. B 89, 285–289 (2007).
[Crossref]

Guo, L.

He, F.

C. Lu, M. Gong, L. Huang, and F. He, “High-power high-repetition-rate acousto-optically Q-switched 1342  nm laser,” Appl. Phys. B 89, 285–289 (2007).
[Crossref]

He, J.

Hou, W.

Hou, X.

Hu, D.

Huang, K. F.

Huang, L.

C. Lu, M. Gong, L. Huang, and F. He, “High-power high-repetition-rate acousto-optically Q-switched 1342  nm laser,” Appl. Phys. B 89, 285–289 (2007).
[Crossref]

Janousek, J.

P. Tidemand-Lichtenberg, J. Janousek, and P. Buchhave, “Synchronized Q-switching of 1064 and 1342  nm laser cavities using a V:YAG saturable absorber,” in Advanced Solid-State Photonics (Optical Society of America, 2004), p. B4.

Jiang, M.

Keller, U.

Knappe, R.

Kong, Y.

Ku, M. L.

Lai, H. C.

Li, A.

Li, D.

Li, G.

Li, H.

Y. F. Ma, J. W. Zhang, H. Li, and X. Yu, “High stable electro-optical cavity-dumped Nd:YAG laser,” Laser Phys. Lett. 9, 561–563 (2012).
[Crossref]

Li, M.

Li, P.

Li, R.

Li, Y.

Liu, F.

Lu, C.

C. Lu, M. Gong, L. Huang, and F. He, “High-power high-repetition-rate acousto-optically Q-switched 1342  nm laser,” Appl. Phys. B 89, 285–289 (2007).
[Crossref]

Ma, Y. F.

Y. F. Ma, J. W. Zhang, H. Li, and X. Yu, “High stable electro-optical cavity-dumped Nd:YAG laser,” Laser Phys. Lett. 9, 561–563 (2012).
[Crossref]

McDonagh, L.

Melchior, H.

Mukhopadhyay, S.

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

Ray, A.

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

Saha, A.

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

Saltiel, S. M.

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

Su, K. W.

Sun, X.

Sun, Y.

Tidemand-Lichtenberg, P.

P. Tidemand-Lichtenberg, J. Janousek, and P. Buchhave, “Synchronized Q-switching of 1064 and 1342  nm laser cavities using a V:YAG saturable absorber,” in Advanced Solid-State Photonics (Optical Society of America, 2004), p. B4.

Wallenstein, R.

Wang, J.

Wang, Z.

Wu, L.

Xia, H.

Xu, J.

Xu, X.

Xu, Z.

Yang, K.

Yao, A.

Yu, H.

Yu, X.

Y. F. Ma, J. W. Zhang, H. Li, and X. Yu, “High stable electro-optical cavity-dumped Nd:YAG laser,” Laser Phys. Lett. 9, 561–563 (2012).
[Crossref]

Yuan, S.

Zhang, B.

Zhang, H.

Zhang, J. W.

Y. F. Ma, J. W. Zhang, H. Li, and X. Yu, “High stable electro-optical cavity-dumped Nd:YAG laser,” Laser Phys. Lett. 9, 561–563 (2012).
[Crossref]

Zhao, S.

Zhao, Y.

Zhou, Y.

Zhuang, S.

Zuo, C.

Appl. Phys. B (2)

C. Lu, M. Gong, L. Huang, and F. He, “High-power high-repetition-rate acousto-optically Q-switched 1342  nm laser,” Appl. Phys. B 89, 285–289 (2007).
[Crossref]

A. Saha, A. Ray, S. Mukhopadhyay, P. K. Datta, P. K. Dutta, and S. M. Saltiel, “Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3  μm,” Appl. Phys. B 87, 431–436 (2007).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

Y. F. Ma, J. W. Zhang, H. Li, and X. Yu, “High stable electro-optical cavity-dumped Nd:YAG laser,” Laser Phys. Lett. 9, 561–563 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Other (1)

P. Tidemand-Lichtenberg, J. Janousek, and P. Buchhave, “Synchronized Q-switching of 1064 and 1342  nm laser cavities using a V:YAG saturable absorber,” in Advanced Solid-State Photonics (Optical Society of America, 2004), p. B4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental scheme of CD 1342 nm Nd : YVO 4 laser.
Fig. 2.
Fig. 2. Average output power and the pulse energy for CD operation of the 1342 nm laser under an absorbed pump power of 26 W at different PRRs.
Fig. 3.
Fig. 3. Average output power and pulse energy for conventional Q -switched operation of a 1342 nm laser under absorbed pump power of 26 W at different PRRs.
Fig. 4.
Fig. 4. Typical oscilloscope trace of a single pulse: (a) CD operation and (b) the conventional Q -switched operation.
Fig. 5.
Fig. 5. Pulse width versus PRR for CD operation and conventional Q -switched operation.
Fig. 6.
Fig. 6. Intensity distribution of the laser beam with the average output power of 3.2 W in CD operation at 10 kHz: (a) 2D beam profile and (b) 3D beam profile.

Metrics