Abstract

The coherent gradient sensing (CGS) method, one kind of shear interferometry sensitive to surface slope, has been applied to full-field curvature measuring for decades. However, its accuracy, sensitivity, and resolution have not been studied clearly. In this paper, we analyze the accuracy, sensitivity, and resolution for the CGS method based on the derivation of its working principle. The results show that the sensitivity is related to the grating pitch and distance, and the accuracy and resolution are determined by the wavelength of the laser beam and the diameter of the reflected beam. The sensitivity is proportional to the ratio of grating distance to its pitch, while the accuracy will decline as this ratio increases. In addition, we demonstrate that using phase gratings as the shearing element can improve the interferogram and enhance accuracy, sensitivity, and resolution. The curvature of a spherical reflector is measured by CGS with Ronchi gratings and phase gratings under different experimental parameters to illustrate this analysis. All of the results are quite helpful for CGS applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The coherent gradient sensor for film curvature measurements at cryogenic temperature

Cong Liu, Xingyi Zhang, Jun Zhou, Youhe Zhou, and Xue Feng
Opt. Express 21(22) 26352-26362 (2013)

Fingerprint detection and mapping using a phase shifted coherent gradient sensing technique

Jitendra Dhanotia, Satya Prakash, Vimal Bhatia, and Shashi Prakash
Appl. Opt. 55(20) 5316-5321 (2016)

Full-field measurement of nonuniform stresses of thin films at high temperature

Xuelin Dong, Xue Feng, Keh-Chih Hwang, Shaopeng Ma, and Qinwei Ma
Opt. Express 19(14) 13201-13208 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription