Abstract

Least-squares integration (LSI) and radial basis function integration (RBFI) methods are widely used to reconstruct specular surface shapes from gradient data in a deflectometry measurement. The traditional LSI method requires gradient data having a rectangular grid, and the RBFI method is effective at handling small size measurement data sets. Practically, the amount of gradient data is rather large, and data grids are in quadrilateral shapes. With this in mind, a new LSI method is proposed to integrate gradient data, which is based on an approximation that the normal vector of one point is perpendicular to the vectors connecting points at either side. A small measurement data set integrated by the RBFI method is employed as a supplementary constraint of the proposed method. Simulation and experimental results show that this proposed method is effective and accurate at handling deflectometry measurement.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry

Lei Huang, Junpeng Xue, Bo Gao, Chao Zuo, and Mourad Idir
Appl. Opt. 56(18) 5139-5144 (2017)

Shape reconstruction from gradient data

Svenja Ettl, Jürgen Kaminski, Markus C. Knauer, and Gerd Häusler
Appl. Opt. 47(12) 2091-2097 (2008)

Improved zonal integration method for high accurate surface reconstruction in quantitative deflectometry

Mengyang Li, Dahai Li, Chengying Jin, Kewei E, Xiaodong Yuan, Zhao Xiong, and Qionghua Wang
Appl. Opt. 56(13) F144-F151 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription