Abstract

In this study, we investigated the spatial light modulation properties of an optical vortex (OV) generator consisting of azo-dye-doped polymer liquid crystal (ADDLC) and a vector beam illuminator, focusing on flexibility and achromaticity for generating OVs. Uniaxially aligned ADDLC forms three-dimensional photoinduced twisted anisotropic structures under vector beam illumination, and can generate high-order OVs with even-numbered topological charges that correspond to the polarization pattern of the illuminating vector beam. The induced anisotropic structure can be re-initialized by turning it off and changing the vector beam polarization distribution. Simulations showed that the OV generator also has achromatic wavefront modulation properties for the broadband spectrum, and this feature was experimentally demonstrated by using two laser sources whose wavelengths are λ=633  nm and 780 nm, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of optical vortices using a uniaxially aligned azo-dye-doped liquid crystal cell and space-variant polarization projection system

Moritsugu Sakamoto, Satoru Kaneko, Kohei Noda, Tomoyuki Sasaki, Nobuhiro Kawatsuki, and Hiroshi Ono
Appl. Opt. 58(26) 7145-7150 (2019)

Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam

Moritsugu Sakamoto, Tomoyuki Sasaki, Kohei Noda, Tran Minh Tien, Nobuhiro Kawatsuki, and Hiroshi Ono
Opt. Lett. 41(3) 642-645 (2016)

Three-dimensional vector holograms formed in twisted-nematic azo-dye-doped polymer liquid-crystal composite

Tran Minh Tien, Tomoyuki Sasaki, Moritsugu Sakamoto, Kohei Noda, Nobuhiro Kawatsuki, and Hiroshi Ono
J. Opt. Soc. Am. B 33(2) 286-291 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008).
    [Crossref]
  2. K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
    [Crossref]
  3. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
    [Crossref]
  4. G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in quantum rings,” Opt. Express 17, 20465–20475 (2009).
    [Crossref]
  5. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref]
  6. J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [Crossref]
  7. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
    [Crossref]
  8. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
    [Crossref]
  9. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 1037–1039 (1990).
  10. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Formation of helical beams by use of Pancharatnam–Berry phase optical elements,” Opt. Lett. 27, 1875–1877 (2002).
    [Crossref]
  11. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref]
  12. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17, 14517–14525 (2009).
    [Crossref]
  13. M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [Crossref]
  14. D. McGloin, N. B. Simpson, and M. J. Padgett, “Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam,” Appl. Opt. 37, 469–472 (1998).
    [Crossref]
  15. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
    [Crossref]
  16. L. Tian, F. Ye, and X. Chen, “Optical vortex converter with helical-periodically poled ferroelectric crystal,” Opt. Express 19, 11591–11596 (2011).
    [Crossref]
  17. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
    [Crossref]
  18. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
    [Crossref]
  19. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
    [Crossref]
  20. K. Yamane, Y. Toda, and R. Morita, “Ultrashort optical-vortex pulse generation in few-cycle regime,” Opt. Express 20, 18986–18993 (2012).
    [Crossref]
  21. M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
    [Crossref]
  22. T. Sasaki, H. Ono, and N. Kawatsuki, “Holographic twisted nematic grating recorded in Azo-Dye doped liquid crystal with homogeneous alignment,” Jpn. J. Appl. Phys. 46, 1579–1584 (2007).
    [Crossref]
  23. T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid crystal composites,” Appl. Opt. 47, 2192–2200 (2008).
    [Crossref]
  24. T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic photonic structures induced by three-dimensional vector holography in dye-doped liquid crystals,” J. Appl. Phys. 104, 043524 (2008).
    [Crossref]
  25. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Grikin, P. Ohberg, and A. S. Arnold, “Optical Ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
    [Crossref]
  26. H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
    [Crossref]
  27. E. G. Churin, J. Hoßfeld, and T. Tcshudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
    [Crossref]
  28. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
    [Crossref]
  29. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometery,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  30. K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
    [Crossref]
  31. G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31, 2042–2044 (2006).
    [Crossref]
  32. M. Rafayelyan and E. Brasselet, “Bragg–Berry mirrors: reflective broadband q-plate,” Opt. Lett. 41, 3972–3975 (2016).
    [Crossref]
  33. J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116, 253903 (2016).
    [Crossref]

2016 (3)

2014 (1)

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

2013 (1)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

2012 (3)

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

K. Yamane, Y. Toda, and R. Morita, “Ultrashort optical-vortex pulse generation in few-cycle regime,” Opt. Express 20, 18986–18993 (2012).
[Crossref]

2011 (1)

2009 (4)

Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17, 14517–14525 (2009).
[Crossref]

G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in quantum rings,” Opt. Express 17, 20465–20475 (2009).
[Crossref]

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

2008 (3)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic photonic structures induced by three-dimensional vector holography in dye-doped liquid crystals,” J. Appl. Phys. 104, 043524 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid crystal composites,” Appl. Opt. 47, 2192–2200 (2008).
[Crossref]

2007 (3)

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Grikin, P. Ohberg, and A. S. Arnold, “Optical Ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Holographic twisted nematic grating recorded in Azo-Dye doped liquid crystal with homogeneous alignment,” Jpn. J. Appl. Phys. 46, 1579–1584 (2007).
[Crossref]

2006 (3)

K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31, 2042–2044 (2006).
[Crossref]

2005 (2)

G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
[Crossref]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

2004 (1)

2002 (1)

1998 (1)

1994 (1)

M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

1993 (1)

E. G. Churin, J. Hoßfeld, and T. Tcshudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

1990 (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 1037–1039 (1990).

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
[Crossref]

1982 (1)

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]

Absil, O.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008).
[Crossref]

Arnold, A. S.

Barnett, S. M.

Bazhenov, V. Y.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 1037–1039 (1990).

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Berakdar, J.

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
[Crossref]

Biener, G.

Brasselet, E.

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Chen, X.

Churin, E. G.

E. G. Churin, J. Hoßfeld, and T. Tcshudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

Coeerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Courtial, J.

De Martini, F.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Ellinas, D.

Emoto, A.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

Foo, G.

Franke-Arnold, S.

Frazal, I. M.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Gibson, G.

Grikin, J. M.

Hasman, E.

Hell, S. W.

K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Hoßfeld, J.

E. G. Churin, J. Hoßfeld, and T. Tcshudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

Huang, H.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Ina, H.

Jahn, R.

K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Karimi, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

Kawatsuki, N.

M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
[Crossref]

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic photonic structures induced by three-dimensional vector holography in dye-doped liquid crystals,” J. Appl. Phys. 104, 043524 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid crystal composites,” Appl. Opt. 47, 2192–2200 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Holographic twisted nematic grating recorded in Azo-Dye doped liquid crystal with homogeneous alignment,” Jpn. J. Appl. Phys. 46, 1579–1584 (2007).
[Crossref]

Kleiner, V.

Kobashi, J.

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116, 253903 (2016).
[Crossref]

Kobayashi, S.

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Leach, J.

Lembessis, V. E.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Marrucci, L.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Marte, M. R.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Mawet, D.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

McGloin, D.

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

Morita, R.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

K. Yamane, Y. Toda, and R. Morita, “Ultrashort optical-vortex pulse generation in few-cycle regime,” Opt. Express 20, 18986–18993 (2012).
[Crossref]

Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17, 14517–14525 (2009).
[Crossref]

Nagali, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

Niv, A.

Noda, K.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Ohberg, P.

Oka, K.

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

Ono, H.

M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
[Crossref]

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic photonic structures induced by three-dimensional vector holography in dye-doped liquid crystals,” J. Appl. Phys. 104, 043524 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid crystal composites,” Appl. Opt. 47, 2192–2200 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Holographic twisted nematic grating recorded in Azo-Dye doped liquid crystal with homogeneous alignment,” Jpn. J. Appl. Phys. 46, 1579–1584 (2007).
[Crossref]

Ozaki, M.

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116, 253903 (2016).
[Crossref]

Padgett, M.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008).
[Crossref]

Padgett, M. J.

Palacios, D. M.

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Pas’ko, V.

Piccirillo, B.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

Quinteiro, G. F.

Rafayelyan, M.

Ren, Y.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Riaud, P.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

Rizzoli, S. O.

K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Sakamoto, M.

Santamato, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

Sasaki, T.

M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
[Crossref]

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic photonic structures induced by three-dimensional vector holography in dye-doped liquid crystals,” J. Appl. Phys. 104, 043524 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid crystal composites,” Appl. Opt. 47, 2192–2200 (2008).
[Crossref]

T. Sasaki, H. Ono, and N. Kawatsuki, “Holographic twisted nematic grating recorded in Azo-Dye doped liquid crystal with homogeneous alignment,” Jpn. J. Appl. Phys. 46, 1579–1584 (2007).
[Crossref]

Sciarrino, F.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

Shioda, T.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

Simpson, N. B.

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Soskin, M. S.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 1037–1039 (1990).

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Surdej, J.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

Swartzlander, G. A.

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

Takeda, M.

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

Tcshudi, T.

E. G. Churin, J. Hoßfeld, and T. Tcshudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Tian, L.

Tien, T. M.

Toda, Y.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

K. Yamane, Y. Toda, and R. Morita, “Ultrashort optical-vortex pulse generation in few-cycle regime,” Opt. Express 20, 18986–18993 (2012).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17, 14517–14525 (2009).
[Crossref]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

Tur, M.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Vasnetsov, M.

Vasnetsov, M. V.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 1037–1039 (1990).

Wakabayashi, H.

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

Wang, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Westphal, V.

K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Willing, K. I.

K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Willner, A. E.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Wright, A. J.

Yamane, K.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

K. Yamane, Y. Toda, and R. Morita, “Ultrashort optical-vortex pulse generation in few-cycle regime,” Opt. Express 20, 18986–18993 (2012).
[Crossref]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yang, Z.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

Ye, F.

Yoshida, H.

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116, 253903 (2016).
[Crossref]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and N. Kawatsuki, “Vector holograms using radially polarized light,” Appl. Phys. Lett. 94, 071114 (2009).
[Crossref]

Astrophys. J. (1)

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

J. Appl. Phys. (1)

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic photonic structures induced by three-dimensional vector holography in dye-doped liquid crystals,” J. Appl. Phys. 104, 043524 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

JETP Lett. (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 1037–1039 (1990).

Jpn. J. Appl. Phys. (1)

T. Sasaki, H. Ono, and N. Kawatsuki, “Holographic twisted nematic grating recorded in Azo-Dye doped liquid crystal with homogeneous alignment,” Jpn. J. Appl. Phys. 46, 1579–1584 (2007).
[Crossref]

Laser Photon. Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008).
[Crossref]

Nat. Photonics (1)

J. Wang, J. Y. Yang, I. M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Nature (1)

K. I. Willing, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

New J. Phys. (2)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

Opt. Commun. (2)

E. G. Churin, J. Hoßfeld, and T. Tcshudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (4)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116, 253903 (2016).
[Crossref]

Proc. Indian Acad. Sci. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]

Proc. R. Soc. London A (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
[Crossref]

Science (1)

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of optical vortex (OV) generation system consisting of functionalized liquid crystals (LCs) and external polarization recording system. (b) Schematic showing the coordinates for the reoriented LC director n re .
Fig. 2.
Fig. 2. Examples of numerically simulated spatial distributions of LC director reorientation angles. (a)–(d) and (e)–(h) are the cases that the recording vector beams have the axially symmetric polarization patterns which are rotating two times and four times around optical axis, respectively.
Fig. 3.
Fig. 3. Experimental setup for OV generation using vector beam-recorded azo-dye-doped LC (ADDLC) cell. Correspondence between phase patterns and polarization patterns of conversion vector beams are illustrated on the right. These linearly polarized vector beams are converted into elliptically polarized vector beams by passing through the quarter-wave plates ( QWP 3 ) with fast axes that are aligned at φ Q = 0    deg and φ Q = ± 45    deg . The spatial light modulator (SLM) plate is imaged at the ADDLC cell to avoid Fresnel diffraction effects.
Fig. 4.
Fig. 4. Experimentally and numerically obtained diffraction patterns of probe beam output from the system shown in Fig. 1(a). For the cases of without QWP 3 and φ Q = 0    deg .
Fig. 5.
Fig. 5. Experimentally and numerically obtained diffraction patterns of probe beam output from the system shown in Fig. 1(a). For the cases of φ Q = + 45    deg and φ Q = 45    deg .
Fig. 6.
Fig. 6. Phase distributions of output probe beam reconstructed using the Fourier transform method. (a)–(e) and (f)–(j) show the cases of φ Q = + 45 and φ Q = 45 , respectively. The gray-scale range is π π .
Fig. 7.
Fig. 7. (a) Relative intensities of OV components with = 2 , plotted as functions of wavelength λ . (b) Beam profiles and reconstructed phase distributions of probe beams with wavelengths of 633, 780, and 1064 nm (ADDLC thickness is 4.5 μm).
Fig. 8.
Fig. 8. Temporal change in diffraction pattern observed when switching the polarization pattern of the recording vector beam. (a) The case of changing the arrangement of QWP 3 ( φ Q = + 45 without QWP 3 φ Q = + 45 ) while maintaining p = 1 . (b) The case of changing the number of p ( 1 2 3 4 5 ) while maintaining the arrangement of QWP 3    φ Q = + 45 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ re ( r , φ , z ) = C θ | n · E n ( r , φ , z ) | S 0 ( r , φ , z ) ,
φ re ( r , φ , z ) = C φ | n · E n ( r , φ , z ) | × { S 1 ( r , φ , z ) sin ( 2 φ 0 ) S 2 ( r , φ , z ) cos ( 2 φ 0 ) } .
C ( r ) = 1 2 π π π E out ( r , θ ) exp [ i θ ] d θ ,

Metrics