Abstract

Visible light communications (VLC) using multi-color light-emitting diodes (LEDs) can support simultaneous high-speed data rate and high-quality lighting. However, since the radiation spectrum of LEDs has a limited width, spectral overlapping will result in multi-color cross talk even when optical filters are applied at the receivers. Moreover, since LEDs are used for illumination and wireless data transmission in the meantime, both lighting quality and communication performance must be considered in VLC systems. In this paper, we consider a multiple-input-multiple-output with low-complexity linear minimum mean square error detection to collaboratively manage the cross talk by maximizing the minimum signal-to-interference-plus-noise ratio (SINR) subject to chromaticity constraint based on MacAdam ellipse, luminance constraint, and signal range constraint. A sub-optimal convex relaxation is proposed to attack the SINR maximization problem. Extensive simulations indicate that the proposed method provides very efficient solutions and outperforms the conventional wave-division multiplexing scheme under the illumination constraint.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the Coverage of Multiple-Input Multiple-Output Visible Light Communications [Invited]

Chen Chen, Wen-De Zhong, and Dehao Wu
J. Opt. Commun. Netw. 9(9) D31-D41 (2017)

Adaptive spatial-layout selection for massive multi-color visible light communications

Yumeng Zhang, Yi-Jun Zhu, Yan-Yu Zhang, and Wang Chao
Appl. Opt. 58(36) 9786-9796 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription