Abstract

The MIR wavelength regime promises better gas detection possibilities than the NIR or the visible region because of the higher absorbencies simulated by HITRAN. In the MIR region are many important absorption lines of significant gases, which are relevant in healthcare, production supervision, and safety and environmental monitoring. One of those gases is methane. CH4 shows significant variations in absorbance with a maximum at 3.3 μm, which results in low detection limits in the range of low ppm. Interband-cascade- and quantum-cascade-based lasers emit at higher wavelengths, where the absorbencies of methane are higher. The comparison is done by analyzing the performance of two spectroscopy applications: tunable diode laser absorption spectroscopy and quartz-enhanced photoacoustic spectroscopy.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
QEPAS sensor for breath analysis: a behavior of pressure

Tobias Milde, Morten Hoppe, Herve Tatenguem, Mario Mordmüller, James O’Gorman, Ulrike Willer, Wolfgang Schade, and Joachim Sacher
Appl. Opt. 57(10) C120-C127 (2018)

Pressure-dependent sensitivity of a single-pass methane detection system using a continuous-wave distributed feedback laser at 3270  nm

Seyed Ghasem Razavipour, James A. Gupta, Graeme Sabiston, Nicaulas Sabourin, Andrew Bezinger, Jean Lapointe, and Daniel Poitras
Appl. Opt. 58(25) 6906-6911 (2019)

Two-component gas quartz-enhanced photoacoustic spectroscopy sensor based on time-division multiplexing of distributed-feedback laser driver current

Zongliang Wang, Jun Chang, Cunwei Tian, Yiwen Feng, Cheng Wang, Hao Zhang, Qinduan Zhang, Hefu Li, Zhenbao Feng, Xiukun Zhang, and Longfei Tang
Appl. Opt. 58(31) 8479-8485 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription