Abstract

The light detection and ranging (LIDAR) full-waveform echo decomposition method based on empirical mode decomposition (EMD) and the local-Levenberg–Marquard (LM) algorithm is proposed in this paper. The proposed method can decompose the full-waveform echo into a series of components, each of which can be assumed as essentially Gaussian. The original full-waveform echo is decomposed into the intrinsic mode functions (IMFs) and a final residual by using the EMD first. Then, the average period ($\overline {{T_m}} $) and corresponding energy densities (EDs) of all IMFs are calculated. A suitable IMF is selected based on the relationship between the EDs of IMFs and the white-noise theoretical spread lines of the 99% confidence-limit level. The components in the full-waveform echo can be detected according to the positions of the maxima of the selected IMF. The initial parameters are estimated by using local-LM fitting. The initial parameters are fitted by global-LM fitting. Compared to the traditional (zero-crossing) ZC method, the proposed method has strong anti-noise performance. It can precisely detect the components and estimate the initial parameters of the components. The proposed method is verified by using the synthetic data; coding LIDAR recorded data; and Land, Vegetation, and Ice Sensor data.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous wavelet transform and iterative decrement algorithm for the Lidar full-waveform echo decomposition

Wu Qinqin, Qiang Shengzhi, and Wang Yuanqing
Appl. Opt. 58(34) 9360-9369 (2019)

Fringe-projection profilometry based on two-dimensional empirical mode decomposition

Suzhen Zheng and Yiping Cao
Appl. Opt. 52(31) 7648-7653 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription