Abstract

We present the design of a radiometer that can simultaneously measure both centroid wavelength and irradiance of a light source without recording its spectrum, when the light source has a finite spectral bandwidth. It consists of two photodiodes separated with a beam splitter in its basic construction, which can be referred to as a dual-photodiode radiometer. This radiometer is calibrated by measuring the spectral responsivities of two photodiodes against the spectral irradiance at the input aperture. The concept of the simultaneous measurement is valid under the condition that the spectral responsivities are linear against wavelengths within the spectral bandwidth of the source to be tested. The feasibility and expected accuracy are analyzed by numerical simulations and experimentally tested for the realization of a UVA irradiance meter, which shows an agreement within 0.2 nm and 0.6% for centroid wavelength and irradiance, respectively, with other reference instruments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source

Ghufron Zaid, Seung-Nam Park, Seongchong Park, and Dong-Hoon Lee
Appl. Opt. 49(35) 6772-6783 (2010)

Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers

Ville Ahtee, Steven W. Brown, Thomas C. Larason, Keith R. Lykke, Erkki Ikonen, and Mart Noorma
Appl. Opt. 46(20) 4228-4236 (2007)

Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source

Andrew P. Levick, Claire L. Greenwell, Jane Ireland, Emma R. Woolliams, Teresa M. Goodman, Agnieszka Bialek, and Nigel P. Fox
Appl. Opt. 53(16) 3508-3519 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier, 2005).
  2. G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
    [Crossref]
  3. T. C. Larason and C. L. Cromer, “Sources of error in UV radiation measurements,” J. Res. Natl. Inst. Stand. Technol. 106, 649–656 (2001).
    [Crossref]
  4. S. Roy, S. Chaudhuri, and C. S. Unnikrishnan, “A simple and inexpensive electronic wavelength-meter using a dual-output photodiode,” Am. J. Phys. 73, 571–573 (2005).
    [Crossref]
  5. COHERENT, User Manual WaveMate Wavelength Meter.
  6. D.-J. Shin, S. Park, K. Jeong, and D.-H. Lee, “Reference radiometer in a dual-photodiode design for calibration of UVA irradiance meters,” in Proceedings of the 29th session of the CIE, CIE x046:2019 (2019), pp. 1243–1248.
  7. See, for example, UV fused silica ground glass diffusers provided by Thorlabs Inc., https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6337 .
  8. N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
    [Crossref]
  9. Calculation software available at https://www.filmetrics.com/reflectance-calculator .
  10. S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
    [Crossref]
  11. G. Xu, X. Huang, and Y. Liu, “APMP.PR-S1 comparison of irradiance responsivity of UVA detectors,” Metrologia 44, Tech. Suppl. 02001 (2007).
    [Crossref]

2016 (1)

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

2012 (1)

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
[Crossref]

2007 (2)

G. Xu, X. Huang, and Y. Liu, “APMP.PR-S1 comparison of irradiance responsivity of UVA detectors,” Metrologia 44, Tech. Suppl. 02001 (2007).
[Crossref]

S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
[Crossref]

2005 (1)

S. Roy, S. Chaudhuri, and C. S. Unnikrishnan, “A simple and inexpensive electronic wavelength-meter using a dual-output photodiode,” Am. J. Phys. 73, 571–573 (2005).
[Crossref]

2001 (1)

T. C. Larason and C. L. Cromer, “Sources of error in UV radiation measurements,” J. Res. Natl. Inst. Stand. Technol. 106, 649–656 (2001).
[Crossref]

Ahmad, N.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
[Crossref]

Arp, U.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Chaudhuri, S.

S. Roy, S. Chaudhuri, and C. S. Unnikrishnan, “A simple and inexpensive electronic wavelength-meter using a dual-output photodiode,” Am. J. Phys. 73, 571–573 (2005).
[Crossref]

Cooksey, C. C.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Cromer, C. L.

T. C. Larason and C. L. Cromer, “Sources of error in UV radiation measurements,” J. Res. Natl. Inst. Stand. Technol. 106, 649–656 (2001).
[Crossref]

Cryan, M. J.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
[Crossref]

Datla, R. U.

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier, 2005).

Eppeldauer, G. P.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Fox, N. A.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
[Crossref]

Gardner, J. L.

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier, 2005).

Hanssen, L. M.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Huang, X.

G. Xu, X. Huang, and Y. Liu, “APMP.PR-S1 comparison of irradiance responsivity of UVA detectors,” Metrologia 44, Tech. Suppl. 02001 (2007).
[Crossref]

Jeong, K.

D.-J. Shin, S. Park, K. Jeong, and D.-H. Lee, “Reference radiometer in a dual-photodiode design for calibration of UVA irradiance meters,” in Proceedings of the 29th session of the CIE, CIE x046:2019 (2019), pp. 1243–1248.

Kim, Y.-W.

Larason, T. C.

T. C. Larason and C. L. Cromer, “Sources of error in UV radiation measurements,” J. Res. Natl. Inst. Stand. Technol. 106, 649–656 (2001).
[Crossref]

Lee, D.-H.

S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
[Crossref]

D.-J. Shin, S. Park, K. Jeong, and D.-H. Lee, “Reference radiometer in a dual-photodiode design for calibration of UVA irradiance meters,” in Proceedings of the 29th session of the CIE, CIE x046:2019 (2019), pp. 1243–1248.

Liu, Y.

G. Xu, X. Huang, and Y. Liu, “APMP.PR-S1 comparison of irradiance responsivity of UVA detectors,” Metrologia 44, Tech. Suppl. 02001 (2007).
[Crossref]

Miller, C. C.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Park, S.

S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–2858 (2007).
[Crossref]

D.-J. Shin, S. Park, K. Jeong, and D.-H. Lee, “Reference radiometer in a dual-photodiode design for calibration of UVA irradiance meters,” in Proceedings of the 29th session of the CIE, CIE x046:2019 (2019), pp. 1243–1248.

Park, S.-N.

Parr, A. C.

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier, 2005).

Podobedov, V. B.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Roy, S.

S. Roy, S. Chaudhuri, and C. S. Unnikrishnan, “A simple and inexpensive electronic wavelength-meter using a dual-output photodiode,” Am. J. Phys. 73, 571–573 (2005).
[Crossref]

Shin, D.-J.

D.-J. Shin, S. Park, K. Jeong, and D.-H. Lee, “Reference radiometer in a dual-photodiode design for calibration of UVA irradiance meters,” in Proceedings of the 29th session of the CIE, CIE x046:2019 (2019), pp. 1243–1248.

Stokes, J.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
[Crossref]

Teng, M.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
[Crossref]

Unnikrishnan, C. S.

S. Roy, S. Chaudhuri, and C. S. Unnikrishnan, “A simple and inexpensive electronic wavelength-meter using a dual-output photodiode,” Am. J. Phys. 73, 571–573 (2005).
[Crossref]

Vest, R. E.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Xu, G.

G. Xu, X. Huang, and Y. Liu, “APMP.PR-S1 comparison of irradiance responsivity of UVA detectors,” Metrologia 44, Tech. Suppl. 02001 (2007).
[Crossref]

Yoon, H. W.

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Am. J. Phys. (1)

S. Roy, S. Chaudhuri, and C. S. Unnikrishnan, “A simple and inexpensive electronic wavelength-meter using a dual-output photodiode,” Am. J. Phys. 73, 571–573 (2005).
[Crossref]

Appl. Opt. (1)

J. Res. Natl. Inst. Stand. Technol. (1)

T. C. Larason and C. L. Cromer, “Sources of error in UV radiation measurements,” J. Res. Natl. Inst. Stand. Technol. 106, 649–656 (2001).
[Crossref]

Metrologia (1)

G. Xu, X. Huang, and Y. Liu, “APMP.PR-S1 comparison of irradiance responsivity of UVA detectors,” Metrologia 44, Tech. Suppl. 02001 (2007).
[Crossref]

Nanoenergy (1)

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nanoenergy 1, 777–782 (2012).
[Crossref]

Proc. SPIE (1)

G. P. Eppeldauer, C. C. Cooksey, H. W. Yoon, L. M. Hanssen, V. B. Podobedov, R. E. Vest, U. Arp, and C. C. Miller, “Broadband radiometric LED measurements,” Proc. SPIE 9954, 99540J (2016).
[Crossref]

Other (5)

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier, 2005).

Calculation software available at https://www.filmetrics.com/reflectance-calculator .

COHERENT, User Manual WaveMate Wavelength Meter.

D.-J. Shin, S. Park, K. Jeong, and D.-H. Lee, “Reference radiometer in a dual-photodiode design for calibration of UVA irradiance meters,” in Proceedings of the 29th session of the CIE, CIE x046:2019 (2019), pp. 1243–1248.

See, for example, UV fused silica ground glass diffusers provided by Thorlabs Inc., https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6337 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic construction of a dual-photodiode radiometer for simultaneous measurement of irradiance and centroid wavelength of light sources with finite spectral bandwidth.
Fig. 2.
Fig. 2. Integrating-sphere-based construction of a dual-photodiode radiometer for simultaneous measurement of irradiance and centroid wavelength of light sources with finite spectral bandwidth.
Fig. 3.
Fig. 3. Example of spectral power responsivity of a commercial Si photodiode, which can be used for the dual-photodiode radiometer.
Fig. 4.
Fig. 4. Spectral transmittance and reflectance of a beam splitter based on Ag film coating on glass (thickness of 10 nm, angle of incidence 45°, unpolarized).
Fig. 5.
Fig. 5. Spectral irradiance responsivity data calculated from the data of Figs. 3 and 4 for the simple realization model of the dual-photodiode radiometer. (a) Spectral irradiance responsivities ${s_{E,1}}(\lambda )$ and ${s_{E,2}}(\lambda )$ for the photodiodes #1 and #2, respectively. (b) Ratio $r(\lambda ) = {s_{E,1}}(\lambda )/{s_{E,2}}(\lambda )$ .
Fig. 6.
Fig. 6. Spectral irradiance of a spectrally filtered source used for the numerical simulation, which has a Gaussian function at a centroid wavelength of 550 nm. The spectral bandwidth in FWHM is varied from 5 to 25 nm.
Fig. 7.
Fig. 7. Differences of centroid wavelength in (a) absolute and in (b) relative between the reference and test values resulted from the numerical simulation for a spectrally filtered source of Fig. 6, which are plotted as a function of the reference centroid wavelength at different values of spectral bandwidth in FWHM.
Fig. 8.
Fig. 8. Relative differences of irradiance between the reference and test values resulted from the numerical simulation for a spectrally filtered source of Fig. 6, which are plotted as a function of the reference centroid wavelength at different values of spectral bandwidth in FWHM.
Fig. 9.
Fig. 9. Spectral irradiance of (a) colored LEDs in red/green/blue/yellow. (b) Colored OLEDs in red/green/blue, which are used for the numerical simulation.
Fig. 10.
Fig. 10. Spectral irradiance of (a) white LEDs with a correlated color temperature (CCT) of 3000 and 6500 K and (b) white OLEDs with a CCT of 3000, 4000, and 5500 K, which are used for the numerical simulation.
Fig. 11.
Fig. 11. Spectral transmittance of a SCHOTT BG7 glass filter at the normal incidence, which is used as a beam splitter in the dual-photodiode UVA irradiance meter.
Fig. 12.
Fig. 12. Spectral irradiance responsivity data measured for the dual-photodiode UVA irradiance meter. (a) Spectral irradiance responsivities ${s_{E,1}}(\lambda )$ and ${s_{E,2}}(\lambda )$ for the photodiodes #1 and #2, respectively. (b) Ratio $r(\lambda ) = {s_{E,1}}(\lambda )/{s_{E,2}}(\lambda )$ .
Fig. 13.
Fig. 13. Spectral distribution of four sources used for experimentally testing the validity of the dual-photodiode UVA irradiance meter.

Tables (3)

Tables Icon

Table 1. Results of the Numerical Simulation with the Simple Realization Model of the Dual-Photodiode Radiometer for Colored LEDs and OLEDs of Fig. 9

Tables Icon

Table 2. Results of the Numerical Simulation with the Simple Realization Model of the Dual-Photodiode Radiometer for White LEDs and OLEDs of Fig. 10

Tables Icon

Table 3. Results of the Experimental Validity Test of the Dual-Photodiode UVA Irradiance Meter for UV Sources of Fig. 13

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E = Δ λ E λ ( λ ) d λ .
i 1 = Δ λ s E , 1 ( λ ) E λ ( λ ) d λ , i 2 = Δ λ s E , 2 ( λ ) E λ ( λ ) d λ .
s E , 1 ( λ ) = a 0 + a 1 λ , s E , 2 ( λ ) = b 0 + b 1 λ .
r ( λ ) s E , 1 ( λ ) s E , 2 ( λ ) ,
λ max λ min > Δ λ .
i 1 = Δ λ ( a 0 + a 1 λ ) E λ ( λ ) d λ = a 0 Δ λ E λ ( λ ) d λ + a 1 Δ λ λ E λ ( λ ) d λ , i 2 = Δ λ ( b 0 + b 1 λ ) E λ ( λ ) d λ = b 0 Δ λ E λ ( λ ) d λ + b 1 Δ λ λ E λ ( λ ) d λ .
λ c = Δ λ λ E λ ( λ ) d λ Δ λ E λ ( λ ) d λ ,
i 1 = ( a 0 + a 1 λ c ) E = s E , 1 ( λ c ) E , i 2 = ( b 0 + b 1 λ c ) E = s E , 2 ( λ c ) E .
i 1 i 2 = s E , 1 ( λ c ) s E , 2 ( λ c ) = r ( λ c ) ; λ c = r 1 ( i 1 i 2 ) .
E = i 1 s E , 1 ( λ c ) = i 2 s E , 2 ( λ c ) .
s E , 1 ( λ ) = t d ( λ ) × g 1 × r B S ( λ ) × s 1 ( λ ) , s E , 2 ( λ ) = t d ( λ ) × g 2 × t B S ( λ ) × s 2 ( λ ) .