Abstract

The sensing of protein is of great importance because of its prominent role in building and repairing tissues. In this work, we present a simple design for the detection and sensing of protein using one-dimensional defective photonic crystals. The main idea of our work is included in the theoretical investigation of the transmittance properties of the resonant mode produced inside the photonic band gap. Our study uses the characteristic matrix method and curve fitting. The main reason for our study is to detect the concentration of a protein solution using an efficient, accurate, and simple method. Here, the defect layer is filled with a protein solution. Our idea depends on two hypotheses, and the first one is based on the appearance of a resonant peak on the photonic band gap. The second one depends on a change in the position of this resonant peak with the concentration of the protein solution. The effect of many parameters on the performance of our sensor, such as the thickness of the defect layer and the sensitivity, is demonstrated. The numerical results could present a simple way to design an accurate, stable, efficient, and low-cost protein sensor compared to other current methods and techniques.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional silicon photonic crystal based biosensing platform for protein detection

Mindy Lee and Philippe M. Fauchet
Opt. Express 15(8) 4530-4535 (2007)

Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection

Sabrina Jahns, Marion Bräu, Björn-Ole Meyer, Torben Karrock, Sören B. Gutekunst, Lars Blohm, Christine Selhuber-Unkel, Raymund Buhmann, Yousef Nazirizadeh, and Martina Gerken
Biomed. Opt. Express 6(10) 3724-3736 (2015)

Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

Tao Chen, Zhanghua Han, Jianjun Liu, and Zhi Hong
Appl. Opt. 53(16) 3454-3458 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription