Abstract

In this paper, the guiding properties and sensor performance are numerically investigated for a dual-core hexagonal lattice photonic crystal fiber sensor based on surface plasmon resonance (SPR). Gold is used as the active plasmonic material in order to create resonance, and it is placed outside the fiber structure to facilitate the fabrication process. The finite-element method is used to numerically investigate the characteristics of the sensor. By means of wavelength and amplitude interrogation methods, it is found that the proposed sensor shows maximum wavelength sensitivity of 16,000 nm/RIU with $6.25 \times {10^{ - 6}}\,\,{\rm RIU}$ resolution and amplitude sensitivity of $2255\,\,{{\rm RIU}^{ - 1}}$ with $4.40 \times {10^{ - 6}}\,\,{\rm RIU}$ resolution. The proposed SPR sensor can detect the analyte refractive index ranging from 1.33 to 1.40. This work also includes an investigation of the effect of changing the gold layer thickness, air-hole diameter, and analyte layer on the sensor performance from the optimized design. The proposed sensor could be employed to detect biological and biochemical analytes because of its simple design and promising results.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of a highly sensitive flat fiber plasmonic refractive index sensor

Moutusi De and Vinod Kumar Singh
Appl. Opt. 59(2) 380-388 (2020)

Microchannel-based plasmonic refractive index sensor for low refractive index detection

Emranul Haque, Md. Anwar Hossain, Yoshinori Namihira, and Feroz Ahmed
Appl. Opt. 58(6) 1547-1554 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription