Abstract

A three-degrees-of-freedom measurement system based on the Faraday effect is proposed for simultaneously measuring two-dimensional straightness errors and their position. Thanks to the Faraday effect of the Faraday rotator, the direction of a linearly polarized beam can be changed by 90° when the linearly polarized beam passes through the same Faraday rotator back and forth twice. A novel optical configuration is designed that can integrate the interferometry and position-sensitive detection technology ingeniously and put their advantages together. The measurement principle is described in detail. The influence of angle error of the semitransparent mirror on straightness measurement is discussed. To verify the feasibility of the proposed system, the experimental setup for measuring three degrees of freedom was constructed, and a series of experiments were carried out.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters

Benyong Chen, Bin Xu, Liping Yan, Enzheng Zhang, and Yanna Liu
Opt. Express 23(7) 9052-9073 (2015)

Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique

Pei Huang, Yan Li, Haoyun Wei, Libing Ren, and Shijie Zhao
Appl. Opt. 52(26) 6607-6615 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).
    [Crossref]
  2. H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).
    [Crossref]
  3. B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).
    [Crossref]
  4. Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
    [Crossref]
  5. B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
    [Crossref]
  6. J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
    [Crossref]
  7. C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
    [Crossref]
  8. J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).
    [Crossref]
  9. B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
    [Crossref]
  10. P. Huang, Y. Li, H. Y. Wei, L. B. Ren, and S. J. Zhao, “Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique,” Appl. Opt. 52, 6607–6615 (2013).
    [Crossref]
  11. Y. B. Huang, K. C. Fan, W. Sun, and S. J. Liu, “Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error,” Opt. Express 26, 17185–17198 (2018).
    [Crossref]
  12. Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).
    [Crossref]
  13. C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).
    [Crossref]
  14. Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).
    [Crossref]
  15. Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).
    [Crossref]
  16. Q. B. Feng, B. Zhang, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express 21, 25805–25819 (2013).
    [Crossref]
  17. B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).
    [Crossref]
  18. X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).
    [Crossref]
  19. B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).
    [Crossref]
  20. E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).
    [Crossref]
  21. E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).
    [Crossref]

2018 (3)

2017 (6)

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).
[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).
[Crossref]

Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).
[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
[Crossref]

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).
[Crossref]

2016 (2)

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).
[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).
[Crossref]

2015 (2)

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).
[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

2014 (2)

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).
[Crossref]

2013 (2)

2010 (1)

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

2009 (1)

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
[Crossref]

2008 (1)

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).
[Crossref]

1997 (1)

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).
[Crossref]

Alan, M.

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).
[Crossref]

Andrew, L. S.

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).
[Crossref]

Bi, Q. Z.

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

Chen, B. Y.

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).
[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).
[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).
[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
[Crossref]

Chen, Y. L.

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).
[Crossref]

Chen, Y. T.

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).
[Crossref]

Cheng, L.

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
[Crossref]

Cui, C. X.

Deng, S. Y.

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Ding, H.

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

Dong, D. F.

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
[Crossref]

Ellis, J. D.

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).
[Crossref]

Fan, B. X.

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
[Crossref]

Fan, K. C.

Feng, Q. B.

Gilmer, S. R.

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).
[Crossref]

Hsu, T. H.

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Huang, H. L.

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Huang, N. D.

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

Huang, P.

Huang, Y. B.

Jeng, Y. R.

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Jurevichius, M.

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).
[Crossref]

Jywe, W. Y.

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Kuang, C. F.

Li, C. R.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
[Crossref]

Li, Y.

Lin, W. C.

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).
[Crossref]

Liu, C. H.

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Liu, C. S.

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).
[Crossref]

Liu, S. J.

Liu, Y. N.

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).
[Crossref]

Lou, Y. T.

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).
[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
[Crossref]

Oleg, B.

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).
[Crossref]

Pahk, H. J.

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).
[Crossref]

Park, J. S.

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).
[Crossref]

Ren, L. B.

Simon, F.

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).
[Crossref]

Strishka, V.

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).
[Crossref]

Sun, C.

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

Sun, W.

Tang, W. H.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
[Crossref]

Teng, X. Y.

Vekteris, V.

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).
[Crossref]

Wang, D. Y.

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
[Crossref]

Wang, M. S.

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Wang, Y. H.

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

Wei, H. Y.

Woody, S. C.

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).
[Crossref]

Xu, B.

Xue, F.

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).
[Crossref]

Yan, L. P.

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).
[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).
[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
[Crossref]

Yang, J. Q.

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
[Crossref]

Yeo, I.

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).
[Crossref]

You, F. L.

Yu, X. Z.

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).
[Crossref]

Zha, J.

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).
[Crossref]

Zhai, Y. S.

Zhang, B.

Zhang, E. Z.

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).
[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).
[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
[Crossref]

Zhang, S. H.

Zhao, S. J.

Zhao, Y. Q.

Zheng, H.

Zhou, W. H.

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
[Crossref]

Zhu, L. M.

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

Appl. Opt. (1)

Int. J. Mach. Tools Manuf. (3)

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).
[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).
[Crossref]

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).
[Crossref]

Opt. Eng. (2)

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).
[Crossref]

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).
[Crossref]

Opt. Express (8)

Q. B. Feng, B. Zhang, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express 21, 25805–25819 (2013).
[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).
[Crossref]

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).
[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).
[Crossref]

Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).
[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).
[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).
[Crossref]

Y. B. Huang, K. C. Fan, W. Sun, and S. J. Liu, “Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error,” Opt. Express 26, 17185–17198 (2018).
[Crossref]

Opt. Lasers. Eng. (1)

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).
[Crossref]

Precis. Eng. (1)

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).
[Crossref]

Proc. Inst. Mech. Eng. B (1)

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).
[Crossref]

Rev. Sci. Instrum. (4)

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).
[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).
[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).
[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Optical configuration of the three-degree-of-freedom measurement system.
Fig. 2.
Fig. 2. Schematic of straightness measurement.
Fig. 3.
Fig. 3. Straightness measurement coordinate systems.
Fig. 4.
Fig. 4. Influence of angle error of the SR on straightness measurement.
Fig. 5.
Fig. 5. Simulation result of angle error influence of the SR.
Fig. 6.
Fig. 6. Experimental setup.
Fig. 7.
Fig. 7. Stability test results. (a) Horizontal straightness error; (b) vertical straightness error; (c) displacement.
Fig. 8.
Fig. 8. Repeatability experimental results. (a) Horizontal straightness error measurement; (b) vertical straightness error measurement; (c) displacement measurement. To make the plots visible, the red dotted line and blue dotted line presenting measured displacement are shifted 20 and 10 mm from the actual values, respectively.
Fig. 9.
Fig. 9. Experimental results of the measurement range of straightness.
Fig. 10.
Fig. 10. Experimental result of straightness measurement comparison.
Fig. 11.
Fig. 11. Experimental result of displacement measurement comparison. To make the plots visible, the blue dotted line presenting measured displacement is shifted 20 mm from the actual values.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ Δ x = 2 2 Δ x P S D 2 2 Δ y P S D Δ y = 2 2 Δ x P S D + 2 2 Δ y P S D ,
{ Δ x h o r i z o n t a l = 2 4 Δ x P S D 2 4 Δ y P S D Δ y v e r t i c a l = 2 4 Δ x P S D + 2 4 Δ y P S D .
{ Δ L h o r i z o n t a l = D d 2 Δ L v e r t i c a l = D d 2 ,
L = ( N + ε ) λ 4 n ,
Δ l = h tan γ h tan ( a r c sin ( n sin γ / n ) ) ,
Δ l = h sin γ h tan ( a r c sin ( n sin γ / n ) ) cos γ .

Metrics