Abstract

Piston diagnosing approaches based on neural networks have shown great success, while a few methods are heavily dependent on the imaging target of the optical system. In addition, they are inevitably faced with the interference of submirrors. Therefore, a unique object-independent feature image is used to form an original kind of data set. Besides, an extremely deep image-based convolutional neural network (CNN) of 18 layers is constructed. Furthermore, 9600 images are generated as a data set for each submirror with a special measure of sensitive area extracting. The diversity of results among all the submirrors is also analyzed to ensure generalization ability. Finally, the average root mean square error of six submirrors between the real piston values and the predicted values is approximately ${0.0622}\lambda$. Our approach has the following characteristics: (1) the data sets are object-independent and contain more effective details, which behave comparatively better in CNN training; (2) the complex network is deep enough and only a limited number of images are required; (3) the method can be applied to the piston diagnosing of segmented mirror to overcome the difficulty brought by the interference of submirrors. Our method does not require special hardware, and is fast to be used at any time, which may be widely applied in piston diagnosing of segmented mirrors.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks

Dequan Li, Shuyan Xu, Dong Wang, and Dejie Yan
Opt. Lett. 44(5) 1170-1173 (2019)

Piston alignment of segmented optical mirrors via convolutional neural networks

Dailos Guerra-Ramos, Lara Díaz-García, Juan Trujillo-Sevilla, and Jose Manuel Rodríguez-Ramos
Opt. Lett. 43(17) 4264-4267 (2018)

Image restoration for synthetic aperture systems with a non-blind deconvolution algorithm via a deep convolutional neural network

Mei Hui, Yong Wu, Weiqian Li, Ming Liu, Liquan Dong, Lingqin Kong, and Yuejin Zhao
Opt. Express 28(7) 9929-9943 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription