Abstract

In this paper, we experimentally demonstrate a strong correlation between the frequencies of the Raman pump and the Raman probe inside an optically pumped Raman laser. We show that the correlation is due to rapid adjustment of the phase of the dipoles that produce the Raman gain, following a sudden jump in the phase of the Raman pump. A detailed numerical model validates this interpretation of the phase correlation. The width of the spectrum of the beat between the Raman pump and the Raman laser is significantly narrowed due to this correlation. As a result, the minimum measurable change in the cavity length, for a given linewidth of the Raman pump laser, is substantially reduced. Therefore, this finding is expected to enhance the sensitivity of such a laser in various metrological applications (e.g., accelerometry).

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superluminal Raman laser with enhanced cavity length sensitivity

Zifan Zhou, Minchuan Zhou, and Selim M. Shahriar
Opt. Express 27(21) 29738-29745 (2019)

Adaptive prism using a double quantum dot structure

Faten K. Hachim, Falah H. Hanoon, and Amin Habbeb Al-Khursan
Appl. Opt. 59(9) 2759-2766 (2020)

Bipartite Gaussian quantum steering, entanglement, and discord and their interconnection via a parametric down-converter

Haleema Sadia Qureshi, Shakir Ullah, and Fazal Ghafoor
Appl. Opt. 59(9) 2701-2708 (2020)

References

  • View by:
  • |
  • |
  • |

  1. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658–17665 (2010).
    [Crossref]
  2. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
    [Crossref]
  3. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).
    [Crossref]
  4. D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78, 1–9 (2008).
    [Crossref]
  5. J. Scheuer and S. M. Shahriar, “Lasing dynamics of super and sub luminal lasers,” Opt. Express 23, 32350–32366 (2015).
    [Crossref]
  6. O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20, 28234–28248 (2012).
    [Crossref]
  7. H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12, 104018 (2010).
    [Crossref]
  8. J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24, 27444–27456 (2016).
    [Crossref]
  9. D. T. Kutzke, O. Wolfe, S. M. Rochester, D. Budker, I. Novikova, and E. Mikhailov, “Tailorable dispersion in a four-wave mixing laser,” Opt. Lett. 42, 2846–2849 (2017).
    [Crossref]
  10. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [Crossref]
  11. P. Kumar and J. H. Shapiro, “Observation of Raman-shifted oscillation near the sodium D lines,” Opt. Lett. 10, 226–228 (2008).
    [Crossref]
  12. M. Poelker and P. Kumar, “Sodium Raman laser: direct measurements of the narrow-band Raman gain,” Opt. Lett. 17, 399–401 (2008).
    [Crossref]
  13. Z. Zhou, M. Zhou, and S. M. Shahriar, “A superluminal Raman laser with enhanced cavity length sensitivity,” Opt. Express 27, 29738–29745 (2019).
    [Crossref]
  14. J. Yablon, Z. Zhou, N. Condon, D. Hileman, S. Tseng, and S. Shahriar, “Demonstration of a highly subluminal laser with suppression of cavity length sensitivity by nearly three orders of magnitude,” Opt. Express 25, 30327–30335 (2017).
    [Crossref]
  15. V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
    [Crossref]
  16. M. Sargent, M. Scully, and W. Lamb, Laser Physics, 1st ed. (CRC Press, 1974).
  17. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17, 8775–8780 (2009).
    [Crossref]
  18. M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61, 351–367 (2014).
    [Crossref]
  19. This is analogous to what happens in a laser when the cavity length changes slightly while the laser is in steady state. The lasing wavelength moves to the one that is resonant with the new length of the cavity, since this new wavelength experiences less loss than the original one. In the current case, the phase of the Raman laser moves to a new value that sees more gain than the original one.

2019 (1)

2017 (2)

2016 (1)

2015 (1)

2014 (1)

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61, 351–367 (2014).
[Crossref]

2012 (1)

2010 (2)

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12, 104018 (2010).
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658–17665 (2010).
[Crossref]

2009 (1)

2008 (4)

P. Kumar and J. H. Shapiro, “Observation of Raman-shifted oscillation near the sodium D lines,” Opt. Lett. 10, 226–228 (2008).
[Crossref]

M. Poelker and P. Kumar, “Sodium Raman laser: direct measurements of the narrow-band Raman gain,” Opt. Lett. 17, 399–401 (2008).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78, 1–9 (2008).
[Crossref]

2007 (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

2005 (1)

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref]

Arissian, L.

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78, 1–9 (2008).
[Crossref]

Budker, D.

Chang, H.

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78, 1–9 (2008).
[Crossref]

Condon, N.

Diels, J. C.

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78, 1–9 (2008).
[Crossref]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref]

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

Hileman, D.

Kotlicki, O.

Krishnamurthy, S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61, 351–367 (2014).
[Crossref]

Kumar, P.

Kutzke, D. T.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref]

Lamb, W.

M. Sargent, M. Scully, and W. Lamb, Laser Physics, 1st ed. (CRC Press, 1974).

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

Mikhailov, E.

Novikova, I.

Pati, G. S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61, 351–367 (2014).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17, 8775–8780 (2009).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

Poelker, M.

Rochester, S. M.

Rostovtsev, Y. V.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

Salit, K.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658–17665 (2010).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17, 8775–8780 (2009).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

Salit, M.

Sargent, M.

M. Sargent, M. Scully, and W. Lamb, Laser Physics, 1st ed. (CRC Press, 1974).

Sautenkov, V. A.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

Scheuer, J.

Scully, M.

M. Sargent, M. Scully, and W. Lamb, Laser Physics, 1st ed. (CRC Press, 1974).

Scully, M. O.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

Shahriar, M. S.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24, 27444–27456 (2016).
[Crossref]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61, 351–367 (2014).
[Crossref]

O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20, 28234–28248 (2012).
[Crossref]

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12, 104018 (2010).
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658–17665 (2010).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17, 8775–8780 (2009).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

Shahriar, S.

Shahriar, S. M.

Shapiro, J. H.

Smith, D. D.

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78, 1–9 (2008).
[Crossref]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

Tseng, S.

Tu, Y.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61, 351–367 (2014).
[Crossref]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref]

Wang, Y.

Wolfe, O.

Yablon, J.

Yum, H. N.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658–17665 (2010).
[Crossref]

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12, 104018 (2010).
[Crossref]

Zhou, M.

Zhou, Z.

J. Mod. Opt. (1)

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61, 351–367 (2014).
[Crossref]

J. Opt. (1)

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12, 104018 (2010).
[Crossref]

Nature (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref]

Opt. Commun. (1)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. A (3)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 1–10 (2007).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78, 1–9 (2008).
[Crossref]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

Other (2)

M. Sargent, M. Scully, and W. Lamb, Laser Physics, 1st ed. (CRC Press, 1974).

This is analogous to what happens in a laser when the cavity length changes slightly while the laser is in steady state. The lasing wavelength moves to the one that is resonant with the new length of the cavity, since this new wavelength experiences less loss than the original one. In the current case, the phase of the Raman laser moves to a new value that sees more gain than the original one.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic of the experiment configuration and (b) relevant energy levels and optical fields in the gain medium.
Fig. 2.
Fig. 2. Experimentally observed phase–noise correlation between the Raman laser and the Raman pump.
Fig. 3.
Fig. 3. (a) Schematics of narrow Raman gain profiles (bottom axis and left axis) and the cavity mode (top axis and right axis); (b) the calculated Raman laser frequency shift as a function of the deviation of the Raman pump detuning, away from the reference case corresponding to gain profile B.
Fig. 4.
Fig. 4. (a) Schematic of broad Raman gain profiles (left axis) and the cavity mode (right axis); (b) the calculated Raman laser frequency shift as a function of the deviation of the Raman pump detuning away from the reference case corresponding to gain profile B.
Fig. 5.
Fig. 5. (a) Schematic of illustration of a random phase jump $\Delta \phi_{\rm RP}$ introduced for the Raman pump. (b) Schematic illustration of the corresponding phase jump $\Delta \phi_{\rm RL}$ that may be experienced by the Raman laser.
Fig. 6.
Fig. 6. Relevant energy levels, optical fields, and decay rates in the gain medium.
Fig. 7.
Fig. 7. Normalized gain as functions of time for (a) a short period of time after introducing a phase jump, (b) approaching steady state. (c) The mean value of the normalized gain over a short period of time as a function of time. The figures are generated using $ \Delta {\phi _{{\rm RP}}} = \Delta {\phi _{{\rm RL}}} = - \pi /4 $ .
Fig. 8.
Fig. 8. (a) Normalized gain at ${T_{{\rm total}}} = {t_A}$ of Fig. 7(c), as a function of $\Delta {\phi _{{\rm RL}}}$ , with $\Delta {\phi _{{\rm RP}}}$ fixed at $ - \pi /{4}$ . (b), (c), and (d) Similar variations in gain, at a fixed ${T_{{\rm total}}}$ , as functions of $\Delta {\phi _{{\rm RL}}}$ , for three other fixed values of $\Delta {\phi _{{\rm RP}}}$ : $ - \pi /{2}$ , $ - {3}\pi /{4}$ , and $ - \pi $ , respectively.
Fig. 9.
Fig. 9. Deviation of the Raman laser frequency as functions of the deviation of the Raman pump detuning away from the reference frequency.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

H / = [ ω 1 0 Ω R P 2 e i ( ω R P t + ϕ R P ) 0 ω 2 Ω R L 2 e i ( ω R L t + ϕ R L ) Ω R P 2 e i ( ω R P t + ϕ R P ) Ω R L 2 e i ( ω R L t + ϕ R L ) ω 3 ] .
| ψ ~ Q 1 | ψ ,
Q 1 e i ( θ 1 t + η 1 ) | 1 1 | + e i ( θ 2 t + η 2 ) | 2 2 | + e i ( θ 3 t + η 3 ) | 3 3 | ,
M = θ 1 | 1 1 | + θ 2 | 2 2 | + θ 3 | 3 3 | .
H ~ / = [ 0 0 Ω RP / 2 0 δ RP + δ RL Ω RL / 2 Ω RP / 2 Ω RL / 2 δ RP ] .
H ~ / = [ i γ 12 2 0 Ω RP 2 0 δ RP + δ RL i γ 21 + Γ OP 2 Ω RL 2 Ω RP 2 Ω RL 2 δ RP i Γ 2 ] .
ρ ~ = i [ H ~ ρ ~ ρ ~ H ~ ] + t ρ ~ source ,
t ρ ~ s o u r c e = [ ( γ 21 + Γ O P ) ρ ~ 22 + ( Γ / 2 ) ρ ~ 33 ] | 1 1 | + [ γ 12 ρ ~ 11 + ( Γ / 2 ) ρ ~ 33 ] | 2 2 | ,
Q 2 = e i Δ ϕ R P | 1 1 | + e i Δ ϕ R L | 2 2 | + | 3 3 | .
H ~ ~ / = [ i γ 12 2 0 Ω RP 2 e i Δ ϕ RP 0 δ RL δ RP i γ 21 + Γ OP 2 Ω RL 2 e i Δ ϕ RL Ω RP 2 e i Δ ϕ RP Ω RL 2 e i Δ ϕ RL δ RP i Γ 2 ] .
f A = ξ Σ A ,
Σ = ( m k ) 2 c L λ cos ( θ / 2 ) ,
A m i n = 1 ξ Σ Δ f A = 1 ξ Σ Γ R P / ζ η ,
A m i n = 1 ξ Σ Δ f A = 1 ξ ζ Σ Γ R P η 0 τ ,
η 0 = ρ P / ( ω 0 ) ,
Γ R P = A m i n ξ ζ Σ ρ P / ( γ B ω 0 ) ,

Metrics