Abstract

Adaptive-optics (AO) systems correct the optical distortions of atmospheric turbulence to improve resolution over long paths. In applications such as remote sensing, object tracking, and directed energy, the AO system’s beacon is often an extended beacon reflecting off an optically rough surface. This situation produces speckle noise that can corrupt the wavefront measurements of the AO system, degrading its correction of the turbulence. This work studies the benefits of speckle mitigation via polychromatic illumination. To quantify the benefits over a wide range of conditions, this work uses a numerical wave-optics model with the split-step method for turbulence and the spectral-slicing method for polychromatic light. It assumes an AO system based on a Shack–Hartmann wavefront sensor. In addition, it includes realistic values for turbulence strength, turbulence distribution along the path, coherence length, extended-beacon size, and object motion. The results show that polychromatic speckle mitigation significantly improves AO system performance, increasing the Strehl ratio by 180% (from 0.10 to 0.28) in one case.

Full Article  |  PDF Article
OSA Recommended Articles
Speckle mitigation for wavefront sensing in the presence of weak turbulence

Noah R. Van Zandt, Mark F. Spencer, and Steven T. Fiorino
Appl. Opt. 58(9) 2300-2310 (2019)

Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects

Noah R. Van Zandt, Mark F. Spencer, Michael J. Steinbock, Brian M. Anderson, Milo W. Hyde, and Steven T. Fiorino
Appl. Opt. 57(15) 4103-4110 (2018)

Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects

Noah R. Van Zandt, Jack E. McCrae, Mark F. Spencer, Michael J. Steinbock, Milo W. Hyde, and Steven T. Fiorino
Appl. Opt. 57(15) 4090-4102 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
    [Crossref]
  2. R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE 2121, 68–76 (1994).
    [Crossref]
  3. J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
    [Crossref]
  4. R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).
  5. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002).
    [Crossref]
  6. M. Li and M. Cvijetic, “Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction,” Appl. Opt. 54, 1453–1462 (2015).
    [Crossref]
  7. M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
    [Crossref]
  8. N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
    [Crossref]
  9. M. A. Vorontsov, V. V. Kolosov, and A. Kohnle, “Adaptive laser beam projection on an extended target: phase- and field-conjugate precompensation,” J. Opt. Soc. Am. A 24, 1975–1993 (2007).
    [Crossref]
  10. T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
    [Crossref]
  11. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  12. D. G. Voelz, K. A. Bush, and P. S. Idell, “Illumination coherence effects in laser-speckle imaging: modeling and experimental demonstration,” Appl. Opt. 36, 1781–1788 (1997).
    [Crossref]
  13. N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
    [Crossref]
  14. I. Markhvida, L. Tchvialeva, T. K. Lee, and H. Zeng, “Influence of geometry on polychromatic speckle contrast,” J. Opt. Soc. Am. A 24, 93–97 (2007).
    [Crossref]
  15. N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).
    [Crossref]
  16. M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
    [Crossref]
  17. J. W. Goodman, Statistical Optics (Wiley, 1985).
  18. C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Imaging through distributed-volume aberrations using single-shot digital holography,” J. Opt. Soc. Am. A 36, A20–A33 (2019).
    [Crossref]
  19. N. R. Van Zandt, M. F. Spencer, and T. J. Brennan, “Polychromatic speckle mitigation for improved adaptive-optics system performance,” Proc. SPIE 10772, 107720R (2018).
    [Crossref]
  20. N. R. Van Zandt, M. F. Spencer, and S. T. Fiorino, “Speckle mitigation for wavefront sensing in the presence of weak turbulence,” Appl. Opt. 58, 2300–2310 (2019).
    [Crossref]
  21. N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” Appl. Opt. 57, 4103–4110 (2018).
    [Crossref]
  22. N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
    [Crossref]
  23. R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).
  24. M. Belen’kii and K. Hughes, “Beacon anisoplanatism,” Proc. SPIE 5087, 69–82 (2003).
    [Crossref]
  25. M. C. Roggemann, “Fundamental considerations for wavefront sensing with extended random beacons,” Proc. SPIE 5552, 189–199 (2004).
    [Crossref]
  26. A. Sergeyev, P. Piatrou, and M. C. Roggemann, “Bootstrap beacon creation for overcoming the effects of beacon anisoplanatism in a laser beam projection system,” Appl. Opt. 47, 2399–2413 (2008).
    [Crossref]
  27. G. A. Tyler, “Adaptive optics compensation for propagation through deep turbulence: initial investigation of gradient descent tomography,” J. Opt. Soc. Am. A 23, 1914–1923 (2006).
    [Crossref]
  28. G. A. Tyler, “Adaptive optics compensation for propagation through deep turbulence: a study of some interesting approaches,” Opt. Eng. 52, 021011 (2012).
    [Crossref]
  29. G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).
  30. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of Hartmann sensors in strong scintillation,” Appl. Opt. 41, 1012–1021 (2002).
    [Crossref]
  31. G. Artzner, “Microlens arrays for Shack–Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
    [Crossref]
  32. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
  33. J. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010).
  34. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (SPIE, 2008).
  35. M. W. Hyde IV and S. R. Bose-Pillai, “Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations,” Opt. Eng. 56, 083107 (2017).
    [Crossref]
  36. N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
    [Crossref]
  37. P. Merritt and M. F. Spencer, Beam Control for Laser Systems (Directed Energy Professional Society, 2018).
  38. G. R. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).

2019 (2)

2018 (3)

2017 (2)

M. W. Hyde IV and S. R. Bose-Pillai, “Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations,” Opt. Eng. 56, 083107 (2017).
[Crossref]

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

2016 (3)

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

2015 (1)

2012 (3)

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

G. A. Tyler, “Adaptive optics compensation for propagation through deep turbulence: a study of some interesting approaches,” Opt. Eng. 52, 021011 (2012).
[Crossref]

2011 (1)

J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
[Crossref]

2009 (1)

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

2004 (1)

M. C. Roggemann, “Fundamental considerations for wavefront sensing with extended random beacons,” Proc. SPIE 5552, 189–199 (2004).
[Crossref]

2003 (1)

M. Belen’kii and K. Hughes, “Beacon anisoplanatism,” Proc. SPIE 5087, 69–82 (2003).
[Crossref]

2002 (2)

1997 (1)

1996 (1)

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[Crossref]

1994 (1)

R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE 2121, 68–76 (1994).
[Crossref]

1992 (1)

G. Artzner, “Microlens arrays for Shack–Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
[Crossref]

Anderson, B. M.

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” Appl. Opt. 57, 4103–4110 (2018).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).

Artzner, G.

G. Artzner, “Microlens arrays for Shack–Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
[Crossref]

Asakura, T.

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[Crossref]

Banet, M. T.

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

Barchers, J. D.

Bartell, R. J.

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

Basu, S.

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

Belen’kii, M.

M. Belen’kii and K. Hughes, “Beacon anisoplanatism,” Proc. SPIE 5087, 69–82 (2003).
[Crossref]

Bose-Pillai, S. R.

M. W. Hyde IV and S. R. Bose-Pillai, “Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations,” Opt. Eng. 56, 083107 (2017).
[Crossref]

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

Bouman, C. A.

Brennan, T. J.

N. R. Van Zandt, M. F. Spencer, and T. J. Brennan, “Polychromatic speckle mitigation for improved adaptive-optics system performance,” Proc. SPIE 10772, 107720R (2018).
[Crossref]

Bush, K. A.

Chateauneuf, M.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Chin, S. L.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Christnacher, F.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Cusumano, S. J.

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Cvijetic, M.

Daigle, J.-F.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Davidson, F. M.

Dubois, J.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Fiorino, S. T.

N. R. Van Zandt, M. F. Spencer, and S. T. Fiorino, “Speckle mitigation for wavefront sensing in the presence of weak turbulence,” Appl. Opt. 58, 2300–2310 (2019).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” Appl. Opt. 57, 4103–4110 (2018).
[Crossref]

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).
[Crossref]

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Fischer, R. E.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (SPIE, 2008).

Frazier, B. W.

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).

Fried, D. L.

Fugate, R. Q.

R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE 2121, 68–76 (1994).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

J. W. Goodman, Statistical Optics (Wiley, 1985).

Hengehold, R. L.

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Hughes, K.

M. Belen’kii and K. Hughes, “Beacon anisoplanatism,” Proc. SPIE 5087, 69–82 (2003).
[Crossref]

Hyde, M. W.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” Appl. Opt. 57, 4103–4110 (2018).
[Crossref]

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Hyde IV, M. W.

M. W. Hyde IV and S. R. Bose-Pillai, “Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations,” Opt. Eng. 56, 083107 (2017).
[Crossref]

Idell, P. S.

Iwai, T.

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[Crossref]

Kamali, Y.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Kohnle, A.

Kolosov, V. V.

Laurenzis, M.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Lee, T. K.

Li, M.

Link, D. J.

Lutz, Y.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Marker, D. K.

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

Markhvida, I.

Matwyschuk, A.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

McCrae, J. E.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

Merritt, P.

P. Merritt and M. F. Spencer, Beam Control for Laser Systems (Directed Energy Professional Society, 2018).

Osche, G. R.

G. R. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).

Pellizzari, C. J.

Perram, G. P.

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).

Piatrou, P.

Poyet, J.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Raynor, R. A.

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

Ricklin, J. C.

Riker, J.

J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
[Crossref]

Roggemann, M. C.

Roy, G.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Schmidt, J.

J. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010).

Sergeyev, A.

Spencer, M. F.

C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Imaging through distributed-volume aberrations using single-shot digital holography,” J. Opt. Soc. Am. A 36, A20–A33 (2019).
[Crossref]

N. R. Van Zandt, M. F. Spencer, and S. T. Fiorino, “Speckle mitigation for wavefront sensing in the presence of weak turbulence,” Appl. Opt. 58, 2300–2310 (2019).
[Crossref]

N. R. Van Zandt, M. F. Spencer, and T. J. Brennan, “Polychromatic speckle mitigation for improved adaptive-optics system performance,” Proc. SPIE 10772, 107720R (2018).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” Appl. Opt. 57, 4103–4110 (2018).
[Crossref]

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

P. Merritt and M. F. Spencer, Beam Control for Laser Systems (Directed Energy Professional Society, 2018).

Steinbock, M. J.

Tadic-Galeb, B.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (SPIE, 2008).

Tchvialeva, L.

Theberge, F.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Tremblay, G.

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

Tyler, G. A.

G. A. Tyler, “Adaptive optics compensation for propagation through deep turbulence: a study of some interesting approaches,” Opt. Eng. 52, 021011 (2012).
[Crossref]

G. A. Tyler, “Adaptive optics compensation for propagation through deep turbulence: initial investigation of gradient descent tomography,” J. Opt. Soc. Am. A 23, 1914–1923 (2006).
[Crossref]

Tyson, R. K.

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).

R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).

Van Zandt, N. R.

N. R. Van Zandt, M. F. Spencer, and S. T. Fiorino, “Speckle mitigation for wavefront sensing in the presence of weak turbulence,” Appl. Opt. 58, 2300–2310 (2019).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” Appl. Opt. 57, 4103–4110 (2018).
[Crossref]

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).
[Crossref]

N. R. Van Zandt, M. F. Spencer, and T. J. Brennan, “Polychromatic speckle mitigation for improved adaptive-optics system performance,” Proc. SPIE 10772, 107720R (2018).
[Crossref]

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

Voelz, D. G.

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

D. G. Voelz, K. A. Bush, and P. S. Idell, “Illumination coherence effects in laser-speckle imaging: modeling and experimental demonstration,” Appl. Opt. 36, 1781–1788 (1997).
[Crossref]

Vorontsov, M. A.

Xiao, X.

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

Yoder, P. R.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (SPIE, 2008).

Zeng, H.

Appl. Opt. (7)

Appl. Phys. B (1)

J.-F. Daigle, Y. Kamali, M. Chateauneuf, G. Tremblay, F. Theberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97, 701–713 (2009).
[Crossref]

J. Opt. Soc. Am. A (5)

Opt. Commun. (1)

N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, D. G. Voelz, X. Xiao, and S. T. Fiorino, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

Opt. Eng. (7)

M. W. Hyde IV and S. R. Bose-Pillai, “Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations,” Opt. Eng. 56, 083107 (2017).
[Crossref]

G. Artzner, “Microlens arrays for Shack–Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
[Crossref]

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

G. A. Tyler, “Adaptive optics compensation for propagation through deep turbulence: a study of some interesting approaches,” Opt. Eng. 52, 021011 (2012).
[Crossref]

Proc. IEEE (1)

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[Crossref]

Proc. SPIE (6)

R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE 2121, 68–76 (1994).
[Crossref]

J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
[Crossref]

M. Belen’kii and K. Hughes, “Beacon anisoplanatism,” Proc. SPIE 5087, 69–82 (2003).
[Crossref]

M. C. Roggemann, “Fundamental considerations for wavefront sensing with extended random beacons,” Proc. SPIE 5552, 189–199 (2004).
[Crossref]

N. R. Van Zandt, M. F. Spencer, and T. J. Brennan, “Polychromatic speckle mitigation for improved adaptive-optics system performance,” Proc. SPIE 10772, 107720R (2018).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Other (10)

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).

J. W. Goodman, Statistical Optics (Wiley, 1985).

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).

J. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010).

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (SPIE, 2008).

P. Merritt and M. F. Spencer, Beam Control for Laser Systems (Directed Energy Professional Society, 2018).

G. R. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Speckle-induced RMS slope-measurement error (single axis) versus the object-subaperture Fresnel number ${N_F}$ [20]. The slope-measurement error is small for small ${N_F}$. It increases rapidly until about ${N_F}={1}$, where it starts to level off to an asymptote. This figure is based on numerical results for a SHWFS.
Fig. 2.
Fig. 2. Average steady-state (a) nPIB and (b) Strehl ratio versus the object-subaperture Fresnel number. The conditions include monochromatic (coherent) illumination and no turbulence. As such, this figure serves as a baseline for the figures that follow. The plots show the 95% confidence intervals, but they are very small here due to the combination of ensemble averaging and time averaging. The system approaches steady-state operation at 7.5 ms, so the time averaging only uses the data from simulation times of 7.5 to 30 ms [19]. In (a), the nPIB decreases with increasing ${N_F}$, as expected. Further, the higher object angular rate mitigates some of the speckle noise through increased temporal integration. In (b), we see that the trends for the Strehl ratio are much the same as for the nPIB, but the Strehl ratio values are lower due to the increased sensitivity of this metric to mild and moderate degradations.
Fig. 3.
Fig. 3. Average steady-state (a) nPIB and (b) Strehl ratio versus the object-subaperture Fresnel number for polychromatic illumination. These results use a vacuum path and the smaller object angular rate. The color key in the lower left defines the number of coherence lengths per resolution cell for each of the colored traces. In (a), the nPIB data shows that the polychromatic speckle mitigation is quite effective when it produces eight or more coherence lengths per resolution cell, and it largely eliminates the speckle noise by 32 coherence lengths per resolution cell. These results are particularly promising given that the object slope angle is set to a near worst-case value of 5.22°. In (b), the Strehl ratio data also shows considerable benefits from polychromatic illumination.
Fig. 4.
Fig. 4. Average (a) nPIB and (b) Strehl ratio for the weak-turbulence case. These simulations use the slower angular rate. With 0.03 coherence lengths per resolution cell (near full coherence) and ${N_F}={2.025}$, the performance is comparable to the open-loop case, meaning that the AO system is not helping. However, with 32 coherence lengths per resolution cell, the performance is greatly improved.
Fig. 5.
Fig. 5. Average (a) nPIB and (b) Strehl ratio for the strong-turbulence case. Note that even with an ideal point-source beacon, the nPIB and Strehl ratio are well below the ideal value of unity. This fact is mostly caused by the scintillation that results from strong turbulence. With an extended beacon, polychromatic speckle mitigation improves the performance, but it only offers about half the benefits that it did in weak turbulence due to the increased dominance of beacon anisoplanatism.
Fig. 6.
Fig. 6. Average (a) nPIB and (b) Strehl ratio for the up-looking case. The benefits of polychromatic speckle mitigation are quite large for this case, even larger than they were for the weak-turbulence case. The large benefits are a result of the dominance of speckle noise over beacon anisoplanatism.
Fig. 7.
Fig. 7. Average (a) nPIB and (b) Strehl ratio for the down-looking case. For this case, the beacon anisoplanatism tends to dominate over the speckle noise, and the benefits of polychromatic speckle mitigation are somewhat limited. Nevertheless, this case does not fall into the strong-turbulence category, so the peak performance is good.

Tables (2)

Tables Icon

Table 1. Simulation Parameters

Tables Icon

Table 2. Turbulence Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N F = D T λ Z ,
θ 0 = [ 2.905 k 2 0 Z C n 2 ( z ) z 5 / 3 d z ] 3 / 5 ,
S = I o n - a x i s , r e a l / I o n - a x i s , d i f f - l i m ,
n P I B = P I B r e a l / P I B d i f f - l i m ,
N c = 3.5 λ Z D l c tan ( θ ) ,
T = λ Z / r 0 .

Metrics