Abstract

Analysis of spatial frequency of Mueller matrix (MM) images in the Fourier domain yields quantifying parameters of anisotropy in the stromal region in normal and precancerous tissue sections of human uterine cervix. The spatial frequencies of MM elements reveal reliable information of microscopic structural organization arising from the different orientations of collagen fibers in the connective tissue and their randomization with disease progression. Specifically, the local disorder generated in the normal periodic and regular structure of collagen during the growth of the cervical cancer finds characteristic manifestation in the Fourier spectrum of the selected Mueller matrix elements encoding the anisotropy effects through retardance and birefringence. In contrast, Fourier spectra of differential polarization gated images are limited to only one orientation of collagen. Fourier spectra of first row elements M11, M12, M13, and M14 and first column elements M11, M21, M31, and M41 discriminates cervical inter-epithelial neoplasia (CIN)-I from normal cervical tissue samples with 95%–100% sensitivity and specificity. FFT spectra of first and fourth row elements classify CIN-I and CIN-II grades of cervical cancerous tissues with 90%–100% sensitivity and 87%–100% specificity. Normal and CIN-II grade samples are successfully discriminated through Fourier spectra of every MM element while that of M31 element arises as the key classifier among normal, CIN-I, and CIN-II grades of cervical cancer with 100% sensitivity and specificity. These results demonstrate the promise of spatial frequency analysis of Mueller matrix images as a novel, to the best of our knowledge, approach for cancer/precancer detection.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states

Prashant Shukla and Asima Pradhan
Opt. Express 17(3) 1600-1609 (2009)

Combined reflectance spectroscopy and coherent light backscattering measurement differentiate cervical cancer from normal epithelial tissue in a xenograft mouse model

Oz Seadia, Dalit Landesman-Milo, Tania Kosoburd, Nino Oren, Levana Sherman, Abraham Yaniv, and Ilan Landesman
Appl. Opt. 57(30) 8964-8970 (2018)

Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy

Xinyi Wang, Yulan Wang, Zixiao Zhang, Maojia Huang, Yiyan Fei, Jiong Ma, and Lan Mi
Biomed. Opt. Express 11(4) 1977-1990 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription