A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).

[PubMed]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103, 093119 (2008).

G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007).

N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).

[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[PubMed]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).

[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Symmetry relations in generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994).

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).

[PubMed]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz-Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).

[PubMed]

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 4, 509–514 (1968).

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).

G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007).

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).

[PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).

[PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19(5), 660–668 (1980).

[PubMed]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).

[PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).

[PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).

[PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).

[PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19(5), 660–668 (1980).

[PubMed]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).

N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[PubMed]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Symmetry relations in generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994).

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz-Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[PubMed]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Symmetry relations in generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994).

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz-Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[PubMed]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103, 093119 (2008).

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).

[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[PubMed]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103, 093119 (2008).

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz-Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).

[PubMed]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103, 093119 (2008).

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).

[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[PubMed]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007).

G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007).

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Symmetry relations in generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103, 093119 (2008).

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).

[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).

[PubMed]

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 4, 509–514 (1968).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[PubMed]

G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007).

N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).

[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[PubMed]

N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103, 093119 (2008).

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz-Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Symmetry relations in generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994).

G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007).

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles in optical trapping,” Opt. Express 18(6), 5802–5808 (2010).

[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double negative particles in the ray optics regime using optical tweezers with focused beams,” Opt. Express 17(24), 21918–21924 (2009).

[PubMed]

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).

[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).

[PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).

[PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).

[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[PubMed]

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 4, 509–514 (1968).

M. W. Berns, W. H. Wright, B. J. Tromberg, G. A. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” in Proceedings of the National Academy of Science of the United States of America86, (1989), pp. 7914–7918.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” in Proceedings of the National Academy of Science of the United States of America94, (1997), pp. 4853–4860.

N. Engheta and R. Ziolkowski, Metamaterials – Physics and Engineering Explorations (IEEE press, Wiley-Interscience, John Wiley & Sons, 2006).

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (IEEE press, Wiley-Interscience, John Wiley & Sons, 2006).

C. F. Bohren, and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, John Wiley & Sons, 1983).

K. R. Fen, Diffusion des Faisceaux Feuille Laser par une Particule Sphérique et Applications aux Ecoulements Diphasiques (Ph.D thesis, Faculté des Sciences de L’Université de Rouen, 1995).