Abstract

In this study, a Q-switch pumped supercontinuum laser (QS-SCL) is used as a light source for in vivo imaging via ultrahigh-resolution optical coherence tomography and angiography (UHR-OCT/OCTA). For this purpose, an OCT system based on a spectral-domain detection scheme is constructed, and a spectrometer with a spectral range of 635 − 875 nm is designed. The effective full-width at half maximum of spectrum covers 150 nm, and the corresponding axial and transverse resolutions are 2 and 10 µm in air, respectively. The relative intensity noise of the QS-SCL and mode-locked SCL is quantitatively compared. Furthermore, a special processing algorithm is developed to eliminate the intrinsic noise of QS-SCL. This work demonstrates that QS-SCLs can effectively reduce the cost and size of UHR-OCT/OCTA instruments, making clinical applications feasible.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography

Sang-Won Lee, Hyun-Woo Song, Moon-Youn Jung, and Seung-Hwan Kim
Opt. Express 19(22) 21227-21237 (2011)

Adaptive-optics ultrahigh-resolution optical coherence tomography

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal
Opt. Lett. 29(18) 2142-2144 (2004)

Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl
Opt. Lett. 28(11) 905-907 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
    [Crossref]
  3. B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
    [Crossref]
  4. M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
    [Crossref]
  5. M. Hermsmeier, S. Jeong, A. Yamamoto, X. Chen, U. Nagavarapu, C. L. Evans, and K. F. Chan, “Characterization of human cutaneous tissue autofluorescence: implications in topical drug delivery studies with fluorescence microscopy,” Biomed. Opt. Express 9(11), 5400–5418 (2018).
    [Crossref]
  6. H. Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T. Ito, Y. Aisaka, and N. Kutsuna, “Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit,” Optica 5(2), 117–126 (2018).
    [Crossref]
  7. N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
    [Crossref]
  8. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
    [Crossref]
  9. R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
    [Crossref]
  10. M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging [invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
    [Crossref]
  11. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
    [Crossref]
  12. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
    [Crossref]
  13. R. G. Cucu, A. G. Podoleanu, J. A. Rogers, J. Pedro, and R. B. Rosen, “Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging,” Opt. Lett. 31(11), 1684–1686 (2006).
    [Crossref]
  14. P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express 12(15), 3532–3542 (2004).
    [Crossref]
  15. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref]
  16. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, and E. Breuer, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
    [Crossref]
  17. H. Wang, C. P. Fleming, and A. M. Rollins, “Ultrahigh-resolution optical coherence tomography at 1.15 µm using photonic crystal fiber with no zero-dispersion wavelengths,” Opt. Express 15(6), 3085–3092 (2007).
    [Crossref]
  18. R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhöfer, G. Schmidinger, V. A. dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
    [Crossref]
  19. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref]
  20. N. Nishizawa, S. Ishida, M. Hirose, S. Sugiyama, T. Inoue, Y. Mori, K. Itoh, and H. Matsumura, “Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography,” Biomed. Opt. Express 3(4), 735–740 (2012).
    [Crossref]
  21. N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Haedersdal, A. Podoleanu, and O. Bang, “The value of ultrahigh resolution OCT in dermatology-delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs,” Biomed. Opt. Express 9(5), 2240–2265 (2018).
    [Crossref]
  22. X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
    [Crossref]
  23. A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
    [Crossref]
  24. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
    [Crossref]
  25. S. Pi, A. Camino, M. Zhang, W. Cepurna, G. Liu, D. Huang, J. Morrison, and Y. Jia, “Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT,” Biomed. Opt. Express 8(10), 4595–4608 (2017).
    [Crossref]
  26. S. Pi, A. Camino, W. Cepurna, X. Wei, M. Zhang, D. Huang, J. Morrison, and Y. Jia, “Automated spectroscopic retinal oximetry with visible-light optical coherence tomography,” Biomed. Opt. Express 9(5), 2056–2067 (2018).
    [Crossref]
  27. C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
    [Crossref]
  28. S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
    [Crossref]
  29. R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
    [Crossref]
  30. J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
    [Crossref]
  31. J.-P. Syu, W. Buddhakosai, S.-J. Chen, C.-C. Ke, S.-H. Chiou, and W.-C. Kuo, “Supercontinuum source-based multi-contrast optical coherence tomography for rat retina imaging,” Biomed. Opt. Express 9(12), 6132–6144 (2018).
    [Crossref]
  32. M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
    [Crossref]
  33. M.-T. Tsai, I.-C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang, Y.-C. Choia, H.-Y. Chou, and J.-D. Lee, “In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography,” Biomed. Opt. Express 7(5), 1865–1876 (2016).
    [Crossref]
  34. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref]
  35. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
    [Crossref]
  36. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref]
  37. S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
    [Crossref]
  38. N. Bosschaart, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy Nienke,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
    [Crossref]
  39. W. J. Brown, S. Kim, and A. Wax, “Noise characterization of supercontinuum sources for low-coherence interferometry applications,” J. Opt. Soc. Am. A 31(12), 2703–2710 (2014).
    [Crossref]
  40. W. Yuan, J. Mavadia-Shukla, J. Xi, W. Liang, X. Yu, S. Yu, and X. Li, “Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging,” Opt. Lett. 41(2), 250–253 (2016).
    [Crossref]
  41. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
    [Crossref]
  42. D. W. Wei, A. J. Deegan, and R. K. Wang, “Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration,” J. Biomed. Opt. 22(6), 066013 (2017).
    [Crossref]
  43. Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning,” Biomed. Opt. Express 9(3), 1111–1129 (2018).
    [Crossref]

2019 (4)

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

2018 (8)

H. Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T. Ito, Y. Aisaka, and N. Kutsuna, “Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit,” Optica 5(2), 117–126 (2018).
[Crossref]

Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning,” Biomed. Opt. Express 9(3), 1111–1129 (2018).
[Crossref]

S. Pi, A. Camino, W. Cepurna, X. Wei, M. Zhang, D. Huang, J. Morrison, and Y. Jia, “Automated spectroscopic retinal oximetry with visible-light optical coherence tomography,” Biomed. Opt. Express 9(5), 2056–2067 (2018).
[Crossref]

N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Haedersdal, A. Podoleanu, and O. Bang, “The value of ultrahigh resolution OCT in dermatology-delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs,” Biomed. Opt. Express 9(5), 2240–2265 (2018).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

M. Hermsmeier, S. Jeong, A. Yamamoto, X. Chen, U. Nagavarapu, C. L. Evans, and K. F. Chan, “Characterization of human cutaneous tissue autofluorescence: implications in topical drug delivery studies with fluorescence microscopy,” Biomed. Opt. Express 9(11), 5400–5418 (2018).
[Crossref]

J.-P. Syu, W. Buddhakosai, S.-J. Chen, C.-C. Ke, S.-H. Chiou, and W.-C. Kuo, “Supercontinuum source-based multi-contrast optical coherence tomography for rat retina imaging,” Biomed. Opt. Express 9(12), 6132–6144 (2018).
[Crossref]

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

2017 (6)

2016 (5)

W. Yuan, J. Mavadia-Shukla, J. Xi, W. Liang, X. Yu, S. Yu, and X. Li, “Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging,” Opt. Lett. 41(2), 250–253 (2016).
[Crossref]

M.-T. Tsai, I.-C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang, Y.-C. Choia, H.-Y. Chou, and J.-D. Lee, “In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography,” Biomed. Opt. Express 7(5), 1865–1876 (2016).
[Crossref]

S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref]

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

2012 (2)

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

2010 (1)

M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
[Crossref]

2009 (2)

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (2)

2005 (1)

2004 (2)

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

1998 (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Aalders, M. C. G.

Adler, D. C.

Aguirre, A. D.

Ahn, Y. C.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Ahnelt, P. K.

Aisaka, Y.

Akiba, M.

Almassalha, L. M.

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

Aschinger, G. C.

Azimani, H.

Backman, V.

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

Bang, O.

Baumgartner, I.

Beckmann, L. J.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

Birks, T.

Blatter, C.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Bojesen, S.

Boppart, S. A.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

Bosschaart, N.

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

Breuer, E.

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

Brown, W. J.

Buddhakosai, W.

Cable, A.

Cadotte, D. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

Camino, A.

Cepurna, W.

Chan, K. F.

Chan, K.-P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, S.

S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref]

Chen, S.-J.

Chen, X.

Chen, Y.

Chen, Z. P.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Chiou, S.-H.

Choia, Y.-C.

Chong, C.

Chong, S. P.

Chou, H.-Y.

Cucu, R. G.

Davis, A.

de Vries, H.

M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
[Crossref]

Deegan, A. J.

D. W. Wei, A. J. Deegan, and R. K. Wang, “Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration,” J. Biomed. Opt. 22(6), 066013 (2017).
[Crossref]

Denninger, M.

dos Santos, V. A.

Drexler, W.

Dua, H.

Dubois, A.

Eid, A.

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

Engelsholm, R. D.

Evans, C. L.

Faber, D. J.

Fawzi, A. A.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref]

Fernández, E. J.

Feuchter, T.

Fleming, C. P.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fujimoto, J. G.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref]

P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express 12(15), 3532–3542 (2004).
[Crossref]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

Garhöfer, G.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

Gonzalo, I. B.

Goodnow, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Haedersdal, M.

Hamad, S.

Harmon, J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hermann, B.

Hermsmeier, M.

Herz, P. R.

Hirose, M.

Hofer, B.

Hong, Y.-J.

Huang, D.

Humbert, G.

Inoue, T.

Ishida, S.

Israelsen, N. M.

Ito, T.

Itoh, K.

Itoh, M.

Iwata, O.

Jensen, M.

Jeong, H. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Jeong, S.

Jia, Y.

Jiang, J.

Jonnal, R. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Jung, W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

Kawabe, T.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

Kawagoe, H.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

Ke, C.-C.

Khurana, M.

Kim, B. M.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Kim, S.

Knight, J.

Ko, T. H.

Kobayashi, H.

Kocaoglu, O. P.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Kok, P.

M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
[Crossref]

Kopf, D.

Koski, A.

Kuo, W.-C.

Kutsuna, N.

Leahy, C.

Lederer, M.

Lee, I.-C.

Lee, J.-D.

Lee, S. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Lee, Z.-F.

Leick, L.

Leon-Saval, S.

Leung, M. K.

Levecq, O.

Li, X.

Liang, W.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Lippok, N.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Liu, G.

Liu, H.-L.

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

Liu, W.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

Liu, Z.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Luk, T. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

Madjarova, V. D.

Mahmud, M. S.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

Makita, S.

Mamedov, D.

Maria, M.

Mariampillai, A.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]

Mashimo, H.

Matsumura, H.

Matsushima, M.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

Mavadia-Shukla, J.

Merkle, C. W.

Mikami, H.

Miller, D. T.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Mogensen, M.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

Mori, K.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

Mori, Y.

Moriyama, E. H.

Morosawa, A.

Morrison, J.

Moselund, P. M.

Munce, N. R.

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

Nagavarapu, U.

Nam, A. S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Nguyen, T.-Q.

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

Nishizawa, N.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

N. Nishizawa, S. Ishida, M. Hirose, S. Sugiyama, T. Inoue, Y. Mori, K. Itoh, and H. Matsumura, “Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography,” Biomed. Opt. Express 3(4), 735–740 (2012).
[Crossref]

Pantalon, A.

Pedro, J.

Petersen, C.

Petersen, W.

Pi, S.

Pircher, M.

Pircher, N.

Pitris, C.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

Podoleanu, A.

Podoleanu, A. G.

Považay, B.

Prokhorov, V.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Radhakrishnan, H.

Rogers, J. A.

Rollins, A. M.

Rosen, R. B.

Russell, P. S. J.

Sakai, T.

Sapeta, S.

Sattmann, H.

Schmetterer, L.

Schmidinger, G.

Schmidl, D.

Schmitt, J.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Schwarzhans, F.

Shah, R. S.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

Shidlovski, V.

Shu, X.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref]

Siddiqui, M.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Siret, D.

Skondra, D.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

Soetikno, B. T.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

Spicer, G.

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

Srinivasan, V. J.

Standish, B. A.

Steenbergen, W.

Stehouwer, M.

M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sugiyama, S.

Sun, C.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

Suter, M. J.

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Suzuki, K.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Syu, J.-P.

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

Tozburun, S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Tsai, M.-T.

Unterhuber, A.

Vakoc, B. J.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Van Leeuwen, T.

M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
[Crossref]

van Leeuwen, T. G.

Veenstra, C.

Vellekoop, I. M.

Verbraak, F.

M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
[Crossref]

Vitkin, I. A.

Vuong, B.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

Wadsworth, W.

Wang, C.-C.

Wang, H.

Wang, R. K.

D. W. Wei, A. J. Deegan, and R. K. Wang, “Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration,” J. Biomed. Opt. 22(6), 066013 (2017).
[Crossref]

Wang, Y.

Wax, A.

Wei, D. W.

D. W. Wei, A. J. Deegan, and R. K. Wang, “Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration,” J. Biomed. Opt. 22(6), 066013 (2017).
[Crossref]

Wei, X.

Werkmeister, R. M.

Werner, J. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Wiesauer, K.

Wilson, B. C.

Winkelmann, J. A.

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

Xi, J.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

Yakubovich, S.

Yamamoto, A.

Yamanaka, M.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

Yang, V. X.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

Yasuno, Y.

Yatagai, T.

Yi, J.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref]

Yu, S.

Yu, X.

Yuan, W.

Yun, S.-H.

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Zawadzki, R. J.

M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging [invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Zhang, H. F.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref]

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

Zhang, M.

Biomed. Opt. Express (14)

N. Nishizawa, S. Ishida, M. Hirose, S. Sugiyama, T. Inoue, Y. Mori, K. Itoh, and H. Matsumura, “Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography,” Biomed. Opt. Express 3(4), 735–740 (2012).
[Crossref]

N. Bosschaart, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy Nienke,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
[Crossref]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref]

Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning,” Biomed. Opt. Express 9(3), 1111–1129 (2018).
[Crossref]

S. Pi, A. Camino, W. Cepurna, X. Wei, M. Zhang, D. Huang, J. Morrison, and Y. Jia, “Automated spectroscopic retinal oximetry with visible-light optical coherence tomography,” Biomed. Opt. Express 9(5), 2056–2067 (2018).
[Crossref]

N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Haedersdal, A. Podoleanu, and O. Bang, “The value of ultrahigh resolution OCT in dermatology-delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs,” Biomed. Opt. Express 9(5), 2240–2265 (2018).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

M. Hermsmeier, S. Jeong, A. Yamamoto, X. Chen, U. Nagavarapu, C. L. Evans, and K. F. Chan, “Characterization of human cutaneous tissue autofluorescence: implications in topical drug delivery studies with fluorescence microscopy,” Biomed. Opt. Express 9(11), 5400–5418 (2018).
[Crossref]

J.-P. Syu, W. Buddhakosai, S.-J. Chen, C.-C. Ke, S.-H. Chiou, and W.-C. Kuo, “Supercontinuum source-based multi-contrast optical coherence tomography for rat retina imaging,” Biomed. Opt. Express 9(12), 6132–6144 (2018).
[Crossref]

A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
[Crossref]

M.-T. Tsai, I.-C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang, Y.-C. Choia, H.-Y. Chou, and J.-D. Lee, “In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography,” Biomed. Opt. Express 7(5), 1865–1876 (2016).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhöfer, G. Schmidinger, V. A. dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging [invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
[Crossref]

S. Pi, A. Camino, M. Zhang, W. Cepurna, G. Liu, D. Huang, J. Morrison, and Y. Jia, “Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT,” Biomed. Opt. Express 8(10), 4595–4608 (2017).
[Crossref]

Curr. Opin. Biotechnol. (1)

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Eye (1)

M. Stehouwer, F. Verbraak, H. de Vries, P. Kok, and T. Van Leeuwen, “Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT,” Eye 24(6), 980–984 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–15 (2019).
[Crossref]

Invest. Ophthalmol. Visual Sci. (2)

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of qdaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Visual Sci. 57(9), OCT86–OCT95 (2016).
[Crossref]

J. Biomed. Opt. (4)

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

S. Chen, X. Shu, J. Yi, A. A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]

D. W. Wei, A. J. Deegan, and R. K. Wang, “Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration,” J. Biomed. Opt. 22(6), 066013 (2017).
[Crossref]

J. Korean Phys. Soc. (1)

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. P. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

J. A. Winkelmann, A. Eid, G. Spicer, L. M. Almassalha, T.-Q. Nguyen, and V. Backman, “Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging,” Light: Sci. Appl. 8(1), 7 (2019).
[Crossref]

Nat. Med. (3)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref]

Nat. Photonics (1)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Opt. Express (6)

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref]

P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express 12(15), 3532–3542 (2004).
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref]

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, and E. Breuer, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
[Crossref]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[Crossref]

H. Wang, C. P. Fleming, and A. M. Rollins, “Ultrahigh-resolution optical coherence tomography at 1.15 µm using photonic crystal fiber with no zero-dispersion wavelengths,” Opt. Express 15(6), 3085–3092 (2007).
[Crossref]

Opt. Lett. (4)

Optica (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. A schematic of the developed spectral-domain UHR-OCT system with a commercial QS-SCL. SC: supercontinuum laser; NF: notch filter; DM dichroic mirror; BS: beam splitter; DC: dispersion compensator; GS: galvanometer; SL: scanning lens; M: mirror; C1, C2: collimators; G: transmission grating; LP: lens pair; LC: line-scan camera; and DAQ: data acquisition board.
Fig. 2.
Fig. 2. (a) A schematic of the home-made spectrometer simulated by Zemax. The spectrometer consists of a transmission grating, two achromatic lens, and a line-scan camera. The detectable spectral range spanned from 600 nm to 900 nm. (b)−(d) The blue, green, and red spots represent the focused spots on the camera pixel grid with different sizes and wavelengths of 600, 750, and 900 nm, respectively. TG: transmission grating, LP: lens pair, and LC: line-scan camera.
Fig. 3.
Fig. 3. Spectra recorded for the sample (blue lines) and reference (red lines) arms, and interference of the signals from both arms (black lines) using the (a) coated and (b) uncoated dispersion compensators.
Fig. 4.
Fig. 4. (a) A flow chart of the processing algorithm for removing the intrinsic noise from the QS-SCL signal. 2D OCT images of the mouse ear skin obtained (b) before processing, (c) after the removal of the noise in the shallow depth range, (d) after the removal of the stripe-shaped noise, and (e) after the moving average calculation. (f)−(i) 3D OCT images corresponding to the images depicted in panels (b)−(e). EP: epidermis, DM: dermis, V: vessel, and AC: auricular cartilage.
Fig. 5.
Fig. 5. Interference spectra obtained by the line-scan camera (a) before and (b) after the removal of the non-interference component. (c) PSF used for the evaluation of the axial resolution. (d) SNRs of the A-scans recorded at various depths.
Fig. 6.
Fig. 6. 2D OCT images of the human skin obtained at exposure times of (a) 25, (b) 50, and (c) 100 µs. EP and DM denote the epidermis and dermis layers, respectively. (d) Sensitivity roll-off curves plotted over a depth range of 1 mm at different exposure times. (e) Noise floors measured on the dB scale at exposure times of 25, 50, and 100 µs. EP: epidermis and DM: dermis.
Fig. 7.
Fig. 7. 2D OCT images of the mouse ear skin obtained at a close location using the (a) UHR-OCT and (b) conventional SS-OCT systems. (c) and (d) Magnified OCT images of the areas indicated by the yellow squares in panels (a) and (b), respectively. Corresponding en-face projected OCTA images obtained by the (e) UHR-OCT and (f) conventional SS-OCT systems [33]. Magnified images of the areas indicated by the (g) white and (h) yellow squares in panel (e). Magnified images of the areas indicated by the (i) white and (j) yellow squares in panel (f). The scale bars represent a transverse distance of 250 µm.
Fig. 8.
Fig. 8. (a) Output spectrum of the QS-SCL captured by the developed OCT spectrometer at an exposure time of 100 µs. (b) Measured RINs of the QS-SCL used in the present study and the commercial ML-SCL (SuperK extreme EXW-12) as functions of wavelength. The integration time was set to 1 ms.
Fig. 9.
Fig. 9. (a) RIN distributions of the used QS-SCL captured by the developed OCT spectrometer when the exposure time was set to 50 and 100 µs, respectively. (b) RIN distributions of the 1060-nm swept source measured from the commercial NIR spectrometer and the balanced detector of the SS-OCT system, respectively.
Fig. 10.
Fig. 10. OCT and OCTA images of the PE tube containing flowing soymilk obtained by the UHR-OCT and SS-OCT systems. (a), (b) UHR-OCT results obtained for the PE tube with a soymilk flow before and after performing the processing procedure. (c), (d) Corresponding SV images of (a) and (b). (e), (f) SS-OCT image of the PE tube with a soymilk flow and the corresponding SV image. The scalar bar denotes the length of 100 µm.

Tables (2)

Tables Icon

Table 1. Specifications of UHR-OCT and SS-OCT

Tables Icon

Table 2. Weber contrast factors estimated for Fig. 10

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SV(x, y) = { I A ( x, y ) 1 2 [ I A ( x, y ) + I B ( x, y ) ] } 2 + { I B ( x, y ) 1 2 [ I A ( x, y ) + I B ( x, y ) ] } 2 2
RIN =  σ M ( λ ) M( λ )

Metrics