Abstract

A chronic brain blood-flow imaging device was developed for cerebrovascular disease treatment. This device comprises a small complementary metal-oxide semiconductor image sensor and a chronic fiber-optic plate window on a mouse head. A long-term cerebral blood-flow imaging technique was established in a freely moving mouse. Brain surface images were visible for one month using the chronic FOP window. This device obtained brain surface images and blood-flow velocity. The blood-flow changes were measured in behavioral experiments using this device. The chronic brain blood-flow imaging device may contribute to determining the cause of cerebrovascular disease and the development of cerebrovascular disease treatment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Longitudinal deep-brain imaging in mouse using visible-light optical coherence tomography through chronic microprism cranial window

Lisa Beckmann, Xian Zhang, Neil A. Nadkarni, Zhen Cai, Ayush Batra, David P. Sullivan, William A. Muller, Cheng Sun, Roman Kuranov, and Hao F. Zhang
Biomed. Opt. Express 10(10) 5235-5250 (2019)

Chronic wide-field imaging of brain hemodynamics in behaving animals

Peng Miao, Lingke Zhang, Miao Li, Yiguang Zhang, Shihan Feng, Qihong Wang, and Nitish V. Thakor
Biomed. Opt. Express 8(1) 436-445 (2017)

Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system

Iliya Sigal, Margaret M. Koletar, Dene Ringuette, Raanan Gad, Melanie Jeffrey, Peter L. Carlen, Bojana Stefanovic, and Ofer Levi
Biomed. Opt. Express 7(9) 3596-3609 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
    [Crossref] [PubMed]
  2. T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
    [Crossref] [PubMed]
  3. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
    [Crossref] [PubMed]
  4. W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
    [Crossref] [PubMed]
  5. I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice,” Neuron 50(4), 617–629 (2006).
    [Crossref] [PubMed]
  6. J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
    [Crossref] [PubMed]
  7. J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS Biomedical Devices,” Sensors (Basel) 9(11), 9073–9093 (2009).
    [Crossref] [PubMed]
  8. A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).
  9. Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
    [Crossref]
  10. M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
    [Crossref]
  11. M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
    [Crossref]
  12. D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
    [Crossref] [PubMed]
  13. A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Sci. Rep. 6(1), 25258 (2016).
    [Crossref] [PubMed]
  14. P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(3), 1–7 (2018).
    [Crossref] [PubMed]
  15. H. Ojima, M. Takayanagi, D. Potapov, and R. Homma, “Isofrequency Band-like Zones of Activation Revealed by Optical Imaging of Intrinsic Signals in the Cat Primary Auditory Cortex,” Cereb. Cortex 15(10), 1497–1509 (2005).
    [Crossref] [PubMed]
  16. Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
    [Crossref] [PubMed]
  17. S. Kawai, Y. Takagi, S. Kaneko, and T. Kurosawa, “Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice,” Exp. Anim. 60(5), 481–487 (2011).
    [Crossref] [PubMed]
  18. S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
    [Crossref] [PubMed]
  19. R. J. Nudo, “Recovery after brain injury: mechanisms and principles,” Front. Hum. Neurosci. 7, 887 (2013).
    [Crossref] [PubMed]
  20. A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
    [Crossref] [PubMed]
  21. Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
    [Crossref] [PubMed]

2018 (1)

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

2017 (2)

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

2016 (3)

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Sci. Rep. 6(1), 25258 (2016).
[Crossref] [PubMed]

2015 (3)

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

2014 (1)

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

2013 (2)

R. J. Nudo, “Recovery after brain injury: mechanisms and principles,” Front. Hum. Neurosci. 7, 887 (2013).
[Crossref] [PubMed]

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

2011 (2)

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

S. Kawai, Y. Takagi, S. Kaneko, and T. Kurosawa, “Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice,” Exp. Anim. 60(5), 481–487 (2011).
[Crossref] [PubMed]

2009 (4)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS Biomedical Devices,” Sensors (Basel) 9(11), 9073–9093 (2009).
[Crossref] [PubMed]

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[Crossref] [PubMed]

2007 (1)

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

2006 (1)

I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice,” Neuron 50(4), 617–629 (2006).
[Crossref] [PubMed]

2005 (1)

H. Ojima, M. Takayanagi, D. Potapov, and R. Homma, “Isofrequency Band-like Zones of Activation Revealed by Optical Imaging of Intrinsic Signals in the Cat Primary Auditory Cortex,” Cereb. Cortex 15(10), 1497–1509 (2005).
[Crossref] [PubMed]

Aita, M.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Bolea, S.

I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice,” Neuron 50(4), 617–629 (2006).
[Crossref] [PubMed]

Bonhoeffer, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Bordier, C.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[Crossref] [PubMed]

Bouwens, A.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Burns, L. D.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Chen, L.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Cheng, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Chow, D. K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Chuckowree, J.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Cocker, E. D.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Das, A.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[Crossref] [PubMed]

De Paola, V.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Deisseroth, K.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Faber, D. J.

A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Sci. Rep. 6(1), 25258 (2016).
[Crossref] [PubMed]

Fan, M.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Ferezou, I.

I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice,” Neuron 50(4), 617–629 (2006).
[Crossref] [PubMed]

Friedman, B.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Gamal, A. E.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Ghosh, K. K.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Haruta, M.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

Hatanaka, Y.

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

He, S.

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

Higuchi, A.

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Hillman, E. M. C.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[Crossref] [PubMed]

Hofer, S. B.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Holtmaat, A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Homma, R.

H. Ojima, M. Takayanagi, D. Potapov, and R. Homma, “Isofrequency Band-like Zones of Activation Revealed by Optical Imaging of Intrinsic Signals in the Cat Primary Auditory Cortex,” Cereb. Cortex 15(10), 1497–1509 (2005).
[Crossref] [PubMed]

Hu, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Huang, J.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Hübener, M.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Ishii, K.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Ishikawa, Y.

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Jennings, J. H.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Jia, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Jung, J. C.

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Kalkman, K.

A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Sci. Rep. 6(1), 25258 (2016).
[Crossref] [PubMed]

Kamimura, A.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Kaneko, S.

S. Kawai, Y. Takagi, S. Kaneko, and T. Kurosawa, “Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice,” Exp. Anim. 60(5), 481–487 (2011).
[Crossref] [PubMed]

Kantak, P. A.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Kawai, S.

S. Kawai, Y. Takagi, S. Kaneko, and T. Kurosawa, “Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice,” Exp. Anim. 60(5), 481–487 (2011).
[Crossref] [PubMed]

Keck, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Kim, T. H.

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Kitsumoto, C.

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

Kleinfeld, D.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Knott, G.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Kurauchi, Y.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Kurosawa, T.

S. Kawai, Y. Takagi, S. Kaneko, and T. Kurosawa, “Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice,” Exp. Anim. 60(5), 481–487 (2011).
[Crossref] [PubMed]

Lasser, T.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Lecoq, J.

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Lee, W. C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Li, J.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Li, M.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Li, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Lu, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Lyden, P. D.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Marchand, P. J.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Mokudai, K.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Mori, A.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Morita, M.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Mostany, R.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Motoyama, M.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

Mrsic-Flogel, T. D.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Murphy, T. H.

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

Nadort, A.

A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Sci. Rep. 6(1), 25258 (2016).
[Crossref] [PubMed]

Nakahara, T.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Nedivi, E.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Nguyen, J.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Niell, C. M.

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Nimmerjahn, A.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Nishimura, N.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Noda, T.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS Biomedical Devices,” Sensors (Basel) 9(11), 9073–9093 (2009).
[Crossref] [PubMed]

Nudo, R. J.

R. J. Nudo, “Recovery after brain injury: mechanisms and principles,” Front. Hum. Neurosci. 7, 887 (2013).
[Crossref] [PubMed]

Ohta, J.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS Biomedical Devices,” Sensors (Basel) 9(11), 9073–9093 (2009).
[Crossref] [PubMed]

Ohta, Y.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

Ojima, H.

H. Ojima, M. Takayanagi, D. Potapov, and R. Homma, “Isofrequency Band-like Zones of Activation Revealed by Optical Imaging of Intrinsic Signals in the Cat Primary Auditory Cortex,” Cereb. Cortex 15(10), 1497–1509 (2005).
[Crossref] [PubMed]

Otte, S.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Petersen, C. C. H.

I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice,” Neuron 50(4), 617–629 (2006).
[Crossref] [PubMed]

Portera-Cailliau, C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Potapov, D.

H. Ojima, M. Takayanagi, D. Potapov, and R. Homma, “Isofrequency Band-like Zones of Activation Revealed by Optical Imaging of Intrinsic Signals in the Cat Primary Auditory Cortex,” Cereb. Cortex 15(10), 1497–1509 (2005).
[Crossref] [PubMed]

Qian, J.

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

Qin, A.

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

Qin, W.

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

Ramakrishnan, C.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Resendez, S. L.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Rong, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Sakamoto, K.

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Sasagawa, K.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS Biomedical Devices,” Sensors (Basel) 9(11), 9073–9093 (2009).
[Crossref] [PubMed]

Schaffer, C. B.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Schnitzer, M. J.

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Shih, A. Y.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Shilling-Scrivo, K.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Shiosaka, S.

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Sirotin, Y. B.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[Crossref] [PubMed]

Stamatakis, A. M.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Stuber, G. D.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Sugiyama, T.

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Sunaga, Y.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

Svoboda, K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Szlag, D.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

Tagawa, A.

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Takagi, Y.

S. Kawai, Y. Takagi, S. Kaneko, and T. Kurosawa, “Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice,” Exp. Anim. 60(5), 481–487 (2011).
[Crossref] [PubMed]

Takayanagi, M.

H. Ojima, M. Takayanagi, D. Potapov, and R. Homma, “Isofrequency Band-like Zones of Activation Revealed by Optical Imaging of Intrinsic Signals in the Cat Primary Auditory Cortex,” Cereb. Cortex 15(10), 1497–1509 (2005).
[Crossref] [PubMed]

Takehara, H.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

Tamura, H.

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Tang, B. Z.

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

Taylor, J. G.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Tokuda, T.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS Biomedical Devices,” Sensors (Basel) 9(11), 9073–9093 (2009).
[Crossref] [PubMed]

Trachtenberg, J. T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Ung, R. L.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

van Leeuwen, T. G.

A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Sci. Rep. 6(1), 25258 (2016).
[Crossref] [PubMed]

Veleta, K.

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Wang, A.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Wang, D.

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

Wilbrecht, L.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Wu, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Wu, R.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Xu, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Yamaguchi, T.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

Yamaura, H.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

Yoshimura, Y.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

Zeng, H.

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Zhang, S.

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

Zhang, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Zhou, Z.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Ziv, Y.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Zong, W.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Cell (1)

J. H. Jennings, R. L. Ung, S. L. Resendez, A. M. Stamatakis, J. G. Taylor, J. Huang, K. Veleta, P. A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G. D. Stuber, “Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors,” Cell 160(3), 516–527 (2015).
[Crossref] [PubMed]

Cell Reports (1)

T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer, “Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex,” Cell Reports 17(12), 3385–3394 (2016).
[Crossref] [PubMed]

Cereb. Cortex (1)

H. Ojima, M. Takayanagi, D. Potapov, and R. Homma, “Isofrequency Band-like Zones of Activation Revealed by Optical Imaging of Intrinsic Signals in the Cat Primary Auditory Cortex,” Cereb. Cortex 15(10), 1497–1509 (2005).
[Crossref] [PubMed]

Cold Spring Harb. Protoc. (1)

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Exp. Anim. (1)

S. Kawai, Y. Takagi, S. Kaneko, and T. Kurosawa, “Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice,” Exp. Anim. 60(5), 481–487 (2011).
[Crossref] [PubMed]

Front. Hum. Neurosci. (1)

R. J. Nudo, “Recovery after brain injury: mechanisms and principles,” Front. Hum. Neurosci. 7, 887 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(3), 1–7 (2018).
[Crossref] [PubMed]

J. Pharmacol. Sci. (1)

Y. Kurauchi, K. Mokudai, A. Mori, K. Sakamoto, T. Nakahara, M. Morita, A. Kamimura, and K. Ishii, “l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway,” J. Pharmacol. Sci. 133(3), 146–155 (2017).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (4)

A. Tagawa, A. Higuchi, T. Sugiyama, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse,” Jpn. J. Appl. Phys. 48, 04C195 (2009).

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, Y. Yoshimura, and J. Ohta, “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55(3S2), 3S2 (2016).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014).
[Crossref]

M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Intrinsic signal imaging of brain function using a small implantable CMOS imaging device,” Jpn. J. Appl. Phys. 54(4S), 04DL10 (2015).
[Crossref]

Nat. Methods (2)

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).
[Crossref] [PubMed]

Nat. Protoc. (1)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Neuron (1)

I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice,” Neuron 50(4), 617–629 (2006).
[Crossref] [PubMed]

PLoS Biol. (1)

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[Crossref] [PubMed]

Sci. Rep. (2)

D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4(1), 4279 (2015).
[Crossref] [PubMed]

A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Sci. Rep. 6(1), 25258 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS Biomedical Devices,” Sensors (Basel) 9(11), 9073–9093 (2009).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       The blood flow images on the brain surface captured by the chronic brain blood-flow imaging device. This images are subtracted images which were made from the brain surface images.
» Visualization 2       The time-lapse images of the blood flow changes of the brain surface. The blood flow changes ware transmitted from the block point to the yellow point.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Chronic brain blood-flow imaging device for a behavioral experiment using mice. (a) shows the outline of the device, and (b) shows the chronic FOP window on the brain surface. (c) shows a picture of the mouse that has the chronic FOP window on its head. (d) shows a picture that captured in the day of surgery. (e) shows a picture that was captured in the 33th day after surgery.
Fig. 2
Fig. 2 Structure of the chronic brain blood-flow imaging device. (a) shows a picture of the chronic brain blood-flow imaging device. The device illuminated the LEDs (λ = 535 nm). (b) shows the structure of the device. This device includes the CMOS image sensor, six green LEDs, and a FOP on an FPC.
Fig. 3
Fig. 3 Brain-surface images with the chronic FOP window. (a) shows the chronic FOP window on the mouse head. The brain surface was observed clearly through the chronic FOP window. The part surrounded by the block dotted lines indicates the imaging area of the device. (b) shows the imaging area of the device captured by a microscope. (c) shows the brain surface image captured by the device with a green light source. The black lines are blood vessels.
Fig. 4
Fig. 4 Results of the blood-flow measurement with the chronic brain blood-flow imaging device and the chronic FOP window. (a) shows the brain surface image captured by the device (see Visualization 1). The green line, red line, and blue line indicate the measurement areas of the blood vessels. (b) shows the results of the line scans of the blood vessels. The slopes of the diagonal lines indicate the blood-flow velocity. The mean of the blood flow velocity was calculated from 10 lines in each line-scan result.
Fig. 5
Fig. 5 Cerebral blood flow imaging in a freely moving experiment. (a) shows a picture of a mouse with the chronic brain blood-flow imaging device and chronic FOP window. In this experiment, a cannula was used to stimulate the brain activity. (b) shows a picture of the behavioral experiment with the mouse. The green LED light source of the device was illuminated. A blue illumination light was used for this experiment, because the blue light did not penetrate the skin and tissues. (c) shows the brain surface image captured in the freely moving experiment by the device. (d) shows the line-scan image obtained in the freely moving experiment.
Fig. 6
Fig. 6 Measurement results of the brain activity changes in the brain surface in the freely moving experiment. (a) shows the brain surface image captured by the device. The five parts surrounded by square lines indicate the measurement areas of the changing signals. (b) shows the time-lapsed images of the brain activity changes in the brain surface with stimulation (see Visualization 2). (c) shows the graph of the brain activity changes at the brain surface. The brain activity changes were transmitted from point 1 to point 5.

Metrics