Abstract

A methodology for the assessment of the cerebral hemodynamic reaction to normotensive hypovolemia, reduction in cerebral perfusion and orthostatic stress leading to ischemic hypoxia and reduced muscular tension is presented. Most frequently, the pilots of highly maneuverable aircraft are exposed to these phenomena. Studies were carried out using the system consisting of a chamber that generates low pressure around the lower part of the body - LBNP (lower body negative pressure) placed on the tilt table. An in-house developed 6-channel NIRS system operating at 735 and 850 nm was used in order to assess the oxygenation of the cerebral cortex, based on measurements of diffusely reflected light in reflectance geometry. The measurements were carried out on a group of 12 active pilots and cadets of the Polish Air Force Academy and 12 healthy volunteers. The dynamics of changes in cerebral oxygenation was evaluated as a response to LBNP stimuli with a simultaneous rapid change of the tilt table angle. Parameters based on calculated changes of total hemoglobin concentration were proposed allowing to evaluate differences in reactions observed in control subjects and pilots/cadets. The results of orthogonal partial least squares-discriminant analysis based on these parameters show that the subjects can be classified into their groups with 100% accuracy.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes

Anna Gerega, Daniel Milej, Wojciech Weigl, Michal Kacprzak, and Adam Liebert
Biomed. Opt. Express 9(7) 2974-2993 (2018)

Influence of intra-abdominal pressure on the amplitude of fluctuations of cerebral hemoglobin concentration in the respiratory band

Piotr Sawosz, Michal Kacprzak, Przemyslaw Pulawski, Magdalena Morawiec, Karolina Bejm, Magdalena Bielacz, Roman Maniewski, Adam Liebert, and Wojciech Dabrowski
Biomed. Opt. Express 10(7) 3434-3446 (2019)

A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury

Gemma Bale, Subhabrata Mitra, Judith Meek, Nicola Robertson, and Ilias Tachtsidis
Biomed. Opt. Express 5(10) 3450-3466 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
    [Crossref]
  2. K. M. Alvim, “Greyout, blackout, and G-loss of consciousness in the Brazilian Air Force: a 1991-92 survey,” Aviat Space Environ. Med. 66, 675–677 (1995).
  3. A. Polese, H. Sandler, and L. D. Montgomery, “Hemodynamic responses to seated and supine lower body negative pressure: comparison with + Gz acceleration,” Aviat Space Environ. Med. 63(6), 467–475 (1992).
  4. E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
    [Crossref]
  5. K. V. Kumar and W. T. Norfleet, “Issues on human acceleration tolerance after long-duration space flights,” in NASA Technical Memorandum (NASA Johnson Space Center, 1992).
  6. C. F. Kelly and A. H. Smith, “Chronic Acceleration Studies - Physical responses to artificial Alterations in Weight,” NASA Contractor Report CR-441 (University of California, 1966).
  7. H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
    [Crossref]
  8. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
    [Crossref]
  9. D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
    [Crossref]
  10. B. T. A. Esch, J. M. Scott, and D. E. R. Warburton, “Construction of a lower body negative pressure chamber,” Adv. Physiol. Educ. 31(1), 76–81 (2007).
    [Crossref]
  11. Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
    [Crossref]
  12. A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).
  13. L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
    [Crossref]
  14. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
    [Crossref]
  15. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [Crossref]
  16. R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis,” Opto-Electron. Rev. 12, 255–262 (2004).
  17. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
    [Crossref]
  18. C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
    [Crossref]
  19. A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
    [Crossref]
  20. A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
    [Crossref]
  21. H. B. Nielsen, “Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery,” Front Physiol. 5, 93 (2014).
    [Crossref]
  22. W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
    [Crossref]
  23. A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
    [Crossref]
  24. G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
    [Crossref]
  25. K. Kurihara, A. Kikukawa, A. Kobayashi, and T. Nakadate, “Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study,” J. Appl. Physiol. 103(4), 1326–1331 (2007).
    [Crossref]
  26. O. Eiken, M. E. Keramidas, N. A. S. Taylor, and M. Grönkvist, “Intraocular pressure and cerebral oxygenation during prolonged headward acceleration,” Eur. J. Appl. Physiol. 117(1), 61–72 (2017).
    [Crossref]
  27. P. B. Benni, J. K. J. Li, B. Chen, J. Cammarota, and D. W. Amory, “Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot + Gz Acceleration Symptoms,” in Oxygen Transport to Tissue XXIV, J. F. Dunn and H. M. Swartz, eds. (Springer, US, 2003), pp. 381–389.
  28. H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.
  29. A. Onozawa, A. Kikukawa, and Y. Miyamoto, “A new evaluation method for + Gz tolerance with loratadine by using a near-infrared spectroscopy,” Dyn. Med. 7(1), 3 (2008).
    [Crossref]
  30. A. Kobayashi and Y. Miyamoto, “In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy,” Aviat Space Environ. Med. 71, 177–183 (2000).
  31. A. Kikukawa, A. Kobayashi, and Y. Miyamoto, “Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers,” Dyn. Med. 7(1), 10 (2008).
    [Crossref]
  32. A. Kobayashi, A. Tong, and A. Kikukawa, “Pilot cerebral oxygen status during air-to-air combat maneuvering,” Aviat Space Environ. Med. 73, 919–924 (2002).
  33. S. A. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1999).
  34. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [Crossref]
  35. Y.-W. Seo, S.-D. Lee, D.-K. Koh, and B.-M. Kim, “Partial Least Squares-discriminant Analysis for the Prediction of Hemodynamic Changes Using Near Infrared Spectroscopy,” J. Opt. Soc. Korea 16(1), 57–62 (2012).
    [Crossref]
  36. P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
    [Crossref]
  37. L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, “Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health,” OMICS 18(8), 513–523 (2014).
    [Crossref]
  38. N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and V. A. Convertino, “Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation,” Physiol. Rev. 99(1), 807–851 (2019).
    [Crossref]
  39. N. Goswami, J. A. Loeppky, and H. Hinghofer-Szalkay, “LBNP: past protocols and technical considerations for experimental design,” Aviat Space Environ. Med. 79(5), 459–471 (2008).
    [Crossref]
  40. W. H. Cooke, K. L. Ryan, and V. A. Convertino, “Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans,” J. Appl. Physiol. 96(4), 1249–1261 (2004).
    [Crossref]
  41. C. Hinojosa-Laborde, C. A. Rickards, K. L. Ryan, and V. A. Convertino, “Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects,” Front Physiol. 2, 85 (2011).
    [Crossref]
  42. V. L. Kay and C. A. Rickards, “Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage,” Physiol Rep. 3(11), e12640 (2015).
    [Crossref]
  43. B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
    [Crossref]
  44. J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
    [Crossref]
  45. W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
    [Crossref]
  46. J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
    [Crossref]
  47. Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
    [Crossref]
  48. S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
    [Crossref]
  49. J. H. Siamwala, B. R. Macias, P. C. Lee, and A. R. Hargens, “Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure,” Physiol Rep. 5(4), e13143 (2017).
    [Crossref]
  50. M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
    [Crossref]
  51. L. Wang, H. Ayaz, and M. Izzetoglu, “Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications,” J. Biophotonics 12(11), e201900175 (2019).
    [Crossref]
  52. D. D. Sheriff, I. H. Nadland, and K. Toska, “Role of sympathetic responses on the hemodynamic consequences of rapid changes in posture in humans,” J. Appl. Physiol. 108(3), 523–532 (2010).
    [Crossref]
  53. V. L. Kay and C. A. Rickards, “The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(4), R375–R383 (2016).
    [Crossref]
  54. N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).
  55. L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
    [Crossref]
  56. Z. Laszlo, A. Rossler, and H. G. Hinghofer-Szalkay, “Cardiovascular changes during and after different LBNP levels in men,” Aviat Space Environ. Med. 69, 32–39 (1998).
  57. M. B. Dikshit, “Lower-body suction and cardiovascular reflexes: physiological and applied considerations,” Indian J. Physiol. Pharmacol. 34, 3–12 (1990).
  58. A. C. Justice, K. E. Covinsky, and J. A. Berlin, “Assessing the Generalizability of Prognostic Information,” Ann. Intern. Med. 130(6), 515–524 (1999).
    [Crossref]
  59. S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
    [Crossref]
  60. G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
    [Crossref]
  61. S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
    [Crossref]
  62. T. Hachiya, I. Hashimoto, M. Saito, and A. P. Blaber, “Peripheral vascular responses of men and women to LBNP,” Aviat Space Environ. Med. 83(2), 118–124 (2012).
    [Crossref]
  63. K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
    [Crossref]

2019 (2)

N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and V. A. Convertino, “Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation,” Physiol. Rev. 99(1), 807–851 (2019).
[Crossref]

L. Wang, H. Ayaz, and M. Izzetoglu, “Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications,” J. Biophotonics 12(11), e201900175 (2019).
[Crossref]

2018 (1)

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

2017 (5)

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

O. Eiken, M. E. Keramidas, N. A. S. Taylor, and M. Grönkvist, “Intraocular pressure and cerebral oxygenation during prolonged headward acceleration,” Eur. J. Appl. Physiol. 117(1), 61–72 (2017).
[Crossref]

J. H. Siamwala, B. R. Macias, P. C. Lee, and A. R. Hargens, “Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure,” Physiol Rep. 5(4), e13143 (2017).
[Crossref]

W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
[Crossref]

2016 (3)

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

V. L. Kay and C. A. Rickards, “The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(4), R375–R383 (2016).
[Crossref]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

2015 (3)

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

V. L. Kay and C. A. Rickards, “Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage,” Physiol Rep. 3(11), e12640 (2015).
[Crossref]

J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
[Crossref]

2014 (4)

L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, “Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health,” OMICS 18(8), 513–523 (2014).
[Crossref]

G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
[Crossref]

H. B. Nielsen, “Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery,” Front Physiol. 5, 93 (2014).
[Crossref]

Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
[Crossref]

2013 (1)

A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
[Crossref]

2012 (2)

Y.-W. Seo, S.-D. Lee, D.-K. Koh, and B.-M. Kim, “Partial Least Squares-discriminant Analysis for the Prediction of Hemodynamic Changes Using Near Infrared Spectroscopy,” J. Opt. Soc. Korea 16(1), 57–62 (2012).
[Crossref]

T. Hachiya, I. Hashimoto, M. Saito, and A. P. Blaber, “Peripheral vascular responses of men and women to LBNP,” Aviat Space Environ. Med. 83(2), 118–124 (2012).
[Crossref]

2011 (2)

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

C. Hinojosa-Laborde, C. A. Rickards, K. L. Ryan, and V. A. Convertino, “Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects,” Front Physiol. 2, 85 (2011).
[Crossref]

2010 (1)

D. D. Sheriff, I. H. Nadland, and K. Toska, “Role of sympathetic responses on the hemodynamic consequences of rapid changes in posture in humans,” J. Appl. Physiol. 108(3), 523–532 (2010).
[Crossref]

2009 (4)

N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
[Crossref]

2008 (5)

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

N. Goswami, J. A. Loeppky, and H. Hinghofer-Szalkay, “LBNP: past protocols and technical considerations for experimental design,” Aviat Space Environ. Med. 79(5), 459–471 (2008).
[Crossref]

A. Kikukawa, A. Kobayashi, and Y. Miyamoto, “Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers,” Dyn. Med. 7(1), 10 (2008).
[Crossref]

A. Onozawa, A. Kikukawa, and Y. Miyamoto, “A new evaluation method for + Gz tolerance with loratadine by using a near-infrared spectroscopy,” Dyn. Med. 7(1), 3 (2008).
[Crossref]

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

2007 (3)

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

K. Kurihara, A. Kikukawa, A. Kobayashi, and T. Nakadate, “Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study,” J. Appl. Physiol. 103(4), 1326–1331 (2007).
[Crossref]

B. T. A. Esch, J. M. Scott, and D. E. R. Warburton, “Construction of a lower body negative pressure chamber,” Adv. Physiol. Educ. 31(1), 76–81 (2007).
[Crossref]

2006 (1)

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

2005 (1)

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

2004 (5)

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis,” Opto-Electron. Rev. 12, 255–262 (2004).

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

W. H. Cooke, K. L. Ryan, and V. A. Convertino, “Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans,” J. Appl. Physiol. 96(4), 1249–1261 (2004).
[Crossref]

2003 (2)

A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
[Crossref]

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

2002 (1)

A. Kobayashi, A. Tong, and A. Kikukawa, “Pilot cerebral oxygen status during air-to-air combat maneuvering,” Aviat Space Environ. Med. 73, 919–924 (2002).

2001 (4)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
[Crossref]

2000 (1)

A. Kobayashi and Y. Miyamoto, “In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy,” Aviat Space Environ. Med. 71, 177–183 (2000).

1999 (1)

A. C. Justice, K. E. Covinsky, and J. A. Berlin, “Assessing the Generalizability of Prognostic Information,” Ann. Intern. Med. 130(6), 515–524 (1999).
[Crossref]

1998 (1)

Z. Laszlo, A. Rossler, and H. G. Hinghofer-Szalkay, “Cardiovascular changes during and after different LBNP levels in men,” Aviat Space Environ. Med. 69, 32–39 (1998).

1995 (1)

K. M. Alvim, “Greyout, blackout, and G-loss of consciousness in the Brazilian Air Force: a 1991-92 survey,” Aviat Space Environ. Med. 66, 675–677 (1995).

1992 (1)

A. Polese, H. Sandler, and L. D. Montgomery, “Hemodynamic responses to seated and supine lower body negative pressure: comparison with + Gz acceleration,” Aviat Space Environ. Med. 63(6), 467–475 (1992).

1990 (1)

M. B. Dikshit, “Lower-body suction and cardiovascular reflexes: physiological and applied considerations,” Indian J. Physiol. Pharmacol. 34, 3–12 (1990).

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Alvim, K. M.

K. M. Alvim, “Greyout, blackout, and G-loss of consciousness in the Brazilian Air Force: a 1991-92 survey,” Aviat Space Environ. Med. 66, 675–677 (1995).

Amory, D. W.

P. B. Benni, J. K. J. Li, B. Chen, J. Cammarota, and D. W. Amory, “Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot + Gz Acceleration Symptoms,” in Oxygen Transport to Tissue XXIV, J. F. Dunn and H. M. Swartz, eds. (Springer, US, 2003), pp. 381–389.

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Ayaz, H.

L. Wang, H. Ayaz, and M. Izzetoglu, “Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications,” J. Biophotonics 12(11), e201900175 (2019).
[Crossref]

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

Bachus, E.

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Baier, S. M.

L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
[Crossref]

Ballard, R. E.

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

Baran, P.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

Bartels, S. A.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Benni, P. B.

P. B. Benni, J. K. J. Li, B. Chen, J. Cammarota, and D. W. Amory, “Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot + Gz Acceleration Symptoms,” in Oxygen Transport to Tissue XXIV, J. F. Dunn and H. M. Swartz, eds. (Springer, US, 2003), pp. 381–389.

Berlin, J. A.

A. C. Justice, K. E. Covinsky, and J. A. Berlin, “Assessing the Generalizability of Prognostic Information,” Ann. Intern. Med. 130(6), 515–524 (1999).
[Crossref]

Bezemer, R.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Blaber, A. P.

N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and V. A. Convertino, “Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation,” Physiol. Rev. 99(1), 807–851 (2019).
[Crossref]

T. Hachiya, I. Hashimoto, M. Saito, and A. P. Blaber, “Peripheral vascular responses of men and women to LBNP,” Aviat Space Environ. Med. 83(2), 118–124 (2012).
[Crossref]

Bleasdale-Barr, K.

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

Bleeker, S. E.

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

Bleil, D. A.

L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
[Crossref]

Boas, D. A.

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

Bots, M. L.

C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
[Crossref]

Bove, T.

A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
[Crossref]

Breit, G. A.

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

Brenner, M.

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

Brzozowska, A.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

Buckley, T. M.

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

Bunce, S. C.

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

Çakir, M. P.

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

Cammarota, J.

P. B. Benni, J. K. J. Li, B. Chen, J. Cammarota, and D. W. Amory, “Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot + Gz Acceleration Symptoms,” in Oxygen Transport to Tissue XXIV, J. F. Dunn and H. M. Swartz, eds. (Springer, US, 2003), pp. 381–389.

Carozzo, A.

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

Carter, J. R.

J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
[Crossref]

Casati, A.

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

Chen, B.

P. B. Benni, J. K. J. Li, B. Chen, J. Cammarota, and D. W. Amory, “Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot + Gz Acceleration Symptoms,” in Oxygen Transport to Tissue XXIV, J. F. Dunn and H. M. Swartz, eds. (Springer, US, 2003), pp. 381–389.

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

Cherpanath, T. G.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Choe, R.

Clary, E. M.

W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
[Crossref]

Colier, W. N.

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

Convertino, V. A.

N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and V. A. Convertino, “Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation,” Physiol. Rev. 99(1), 807–851 (2019).
[Crossref]

Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
[Crossref]

C. Hinojosa-Laborde, C. A. Rickards, K. L. Ryan, and V. A. Convertino, “Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects,” Front Physiol. 2, 85 (2011).
[Crossref]

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

W. H. Cooke, K. L. Ryan, and V. A. Convertino, “Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans,” J. Appl. Physiol. 96(4), 1249–1261 (2004).
[Crossref]

Cooke, W. H.

J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
[Crossref]

W. H. Cooke, K. L. Ryan, and V. A. Convertino, “Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans,” J. Appl. Physiol. 96(4), 1249–1261 (2004).
[Crossref]

Cope, M.

A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
[Crossref]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Correa, E.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Covinsky, K. E.

A. C. Justice, K. E. Covinsky, and J. A. Berlin, “Assessing the Generalizability of Prognostic Information,” Ann. Intern. Med. 130(6), 515–524 (1999).
[Crossref]

Crandall, C. G.

Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
[Crossref]

Cucchiara, B. L.

Curtin, A.

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

D’Arceuil, H.

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

Day, T. A.

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

de Borst, G. J.

C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
[Crossref]

De Hert, S. G.

A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
[Crossref]

de Vries, F. J.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Derksen-Lubsen, G.

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

Detre, J. A.

Diamond, S. G.

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

Dikshit, M. B.

M. B. Dikshit, “Lower-body suction and cardiovascular reflexes: physiological and applied considerations,” Indian J. Physiol. Pharmacol. 34, 3–12 (1990).

Donders, A. R. T.

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

Durduran, T.

Durocher, J. J.

J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
[Crossref]

Dziuda, L.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

Edlow, B. L.

Eiken, O.

O. Eiken, M. E. Keramidas, N. A. S. Taylor, and M. Grönkvist, “Intraocular pressure and cerebral oxygenation during prolonged headward acceleration,” Eur. J. Appl. Physiol. 117(1), 61–72 (2017).
[Crossref]

Ellis, D. I.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Elwell, C.

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
[Crossref]

Esch, B. T. A.

B. T. A. Esch, J. M. Scott, and D. E. R. Warburton, “Construction of a lower body negative pressure chamber,” Adv. Physiol. Educ. 31(1), 76–81 (2007).
[Crossref]

Fedorowski, A.

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Franceschini, M. A.

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

Franke, W. D.

L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
[Crossref]

Fu, Q.

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

Furmanov, A.

G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
[Crossref]

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

Gerega, A.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Goodacre, R.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Goswami, N.

N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and V. A. Convertino, “Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation,” Physiol. Rev. 99(1), 807–851 (2019).
[Crossref]

N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).

N. Goswami, J. A. Loeppky, and H. Hinghofer-Szalkay, “LBNP: past protocols and technical considerations for experimental design,” Aviat Space Environ. Med. 79(5), 459–471 (2008).
[Crossref]

Grasser, E.

N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).

Green, N. D. C.

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

Greenberg, J. H.

Grobbee, D. E.

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

Gromski, P. S.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Grönkvist, M.

O. Eiken, M. E. Keramidas, N. A. S. Taylor, and M. Grönkvist, “Intraocular pressure and cerebral oxygenation during prolonged headward acceleration,” Eur. J. Appl. Physiol. 117(1), 61–72 (2017).
[Crossref]

Hachiya, T.

T. Hachiya, I. Hashimoto, M. Saito, and A. P. Blaber, “Peripheral vascular responses of men and women to LBNP,” Aviat Space Environ. Med. 83(2), 118–124 (2012).
[Crossref]

Hamrefors, V.

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Hargens, A. R.

J. H. Siamwala, B. R. Macias, P. C. Lee, and A. R. Hargens, “Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure,” Physiol Rep. 5(4), e13143 (2017).
[Crossref]

W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
[Crossref]

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

Harridge, S. D. R.

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

Harwood, M. H.

J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
[Crossref]

Hashimoto, I.

T. Hachiya, I. Hashimoto, M. Saito, and A. P. Blaber, “Peripheral vascular responses of men and women to LBNP,” Aviat Space Environ. Med. 83(2), 118–124 (2012).
[Crossref]

Hastings, J. L.

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

Heard, S. O.

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

Heger, M.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Hinghofer-Szalkay, H.

N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and V. A. Convertino, “Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation,” Physiol. Rev. 99(1), 807–851 (2019).
[Crossref]

N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).

N. Goswami, J. A. Loeppky, and H. Hinghofer-Szalkay, “LBNP: past protocols and technical considerations for experimental design,” Aviat Space Environ. Med. 79(5), 459–471 (2008).
[Crossref]

Hinghofer-Szalkay, H. G.

Z. Laszlo, A. Rossler, and H. G. Hinghofer-Szalkay, “Cardiovascular changes during and after different LBNP levels in men,” Aviat Space Environ. Med. 69, 32–39 (1998).

Hinojosa-Laborde, C.

C. Hinojosa-Laborde, C. A. Rickards, K. L. Ryan, and V. A. Convertino, “Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects,” Front Physiol. 2, 85 (2011).
[Crossref]

Holm, H. H.

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Hopman, M. T.

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

Houtman, S.

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

Howatt, M. K.

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

Hunt, K.

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

Huppert, T. J.

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

Igielman, F.

A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
[Crossref]

Ince, C.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Ingram-Cotton, N. C.

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

Itshayek, E.

G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
[Crossref]

Izzetoglu, K.

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

Izzetoglu, M.

L. Wang, H. Ayaz, and M. Izzetoglu, “Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications,” J. Biophotonics 12(11), e201900175 (2019).
[Crossref]

Janusek, D.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Justice, A. C.

A. C. Justice, K. E. Covinsky, and J. A. Berlin, “Assessing the Generalizability of Prognostic Information,” Ann. Intern. Med. 130(6), 515–524 (1999).
[Crossref]

Juszynski, L.

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

Kacprzak, M.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis,” Opto-Electron. Rev. 12, 255–262 (2004).

Kappelle, L. J.

C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
[Crossref]

Karemaker, J. M.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Kasner, S. E.

Kay, V. L.

V. L. Kay and C. A. Rickards, “The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(4), R375–R383 (2016).
[Crossref]

V. L. Kay and C. A. Rickards, “Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage,” Physiol Rep. 3(11), e12640 (2015).
[Crossref]

Kelly, C. F.

C. F. Kelly and A. H. Smith, “Chronic Acceleration Studies - Physical responses to artificial Alterations in Weight,” NASA Contractor Report CR-441 (University of California, 1966).

Keramidas, M. E.

O. Eiken, M. E. Keramidas, N. A. S. Taylor, and M. Grönkvist, “Intraocular pressure and cerebral oxygenation during prolonged headward acceleration,” Eur. J. Appl. Physiol. 117(1), 61–72 (2017).
[Crossref]

Kikukawa, A.

A. Onozawa, A. Kikukawa, and Y. Miyamoto, “A new evaluation method for + Gz tolerance with loratadine by using a near-infrared spectroscopy,” Dyn. Med. 7(1), 3 (2008).
[Crossref]

A. Kikukawa, A. Kobayashi, and Y. Miyamoto, “Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers,” Dyn. Med. 7(1), 10 (2008).
[Crossref]

K. Kurihara, A. Kikukawa, A. Kobayashi, and T. Nakadate, “Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study,” J. Appl. Physiol. 103(4), 1326–1331 (2007).
[Crossref]

A. Kobayashi, A. Tong, and A. Kikukawa, “Pilot cerebral oxygen status during air-to-air combat maneuvering,” Aviat Space Environ. Med. 73, 919–924 (2002).

Kim, B.-M.

Kim, J. G.

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

Kim, M. N.

King, D. S.

L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
[Crossref]

Kiran, A.

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

Kobayashi, A.

A. Kikukawa, A. Kobayashi, and Y. Miyamoto, “Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers,” Dyn. Med. 7(1), 10 (2008).
[Crossref]

K. Kurihara, A. Kikukawa, A. Kobayashi, and T. Nakadate, “Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study,” J. Appl. Physiol. 103(4), 1326–1331 (2007).
[Crossref]

A. Kobayashi, A. Tong, and A. Kikukawa, “Pilot cerebral oxygen status during air-to-air combat maneuvering,” Aviat Space Environ. Med. 73, 919–924 (2002).

A. Kobayashi and Y. Miyamoto, “In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy,” Aviat Space Environ. Med. 71, 177–183 (2000).

Koh, D.-K.

Kowalczuk, K.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

Kozluk, E.

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

Krej, M.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

Krüger, T. P. J.

L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, “Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health,” OMICS 18(8), 513–523 (2014).
[Crossref]

Kumar, K. V.

K. V. Kumar and W. T. Norfleet, “Issues on human acceleration tolerance after long-duration space flights,” in NASA Technical Memorandum (NASA Johnson Space Center, 1992).

Kurihara, K.

K. Kurihara, A. Kikukawa, A. Kobayashi, and T. Nakadate, “Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study,” J. Appl. Physiol. 103(4), 1326–1331 (2007).
[Crossref]

Kwasny, P.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

Laszlo, Z.

Z. Laszlo, A. Rossler, and H. G. Hinghofer-Szalkay, “Cardiovascular changes during and after different LBNP levels in men,” Aviat Space Environ. Med. 69, 32–39 (1998).

Lee, J.

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

Lee, P. C.

J. H. Siamwala, B. R. Macias, P. C. Lee, and A. R. Hargens, “Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure,” Physiol Rep. 5(4), e13143 (2017).
[Crossref]

Lee, S.-D.

Levine, B. D.

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

Li, J. K. J.

P. B. Benni, J. K. J. Li, B. Chen, J. Cammarota, and D. W. Amory, “Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot + Gz Acceleration Symptoms,” in Oxygen Transport to Tissue XXIV, J. F. Dunn and H. M. Swartz, eds. (Springer, US, 2003), pp. 381–389.

Liebert, A.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis,” Opto-Electron. Rev. 12, 255–262 (2004).

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

Lima, A.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Loeppky, J. A.

N. Goswami, J. A. Loeppky, and H. Hinghofer-Szalkay, “LBNP: past protocols and technical considerations for experimental design,” Aviat Space Environ. Med. 79(5), 459–471 (2008).
[Crossref]

Macdonald, R.

Macias, B. R.

W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
[Crossref]

J. H. Siamwala, B. R. Macias, P. C. Lee, and A. R. Hargens, “Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure,” Physiol Rep. 5(4), e13143 (2017).
[Crossref]

Magnusson, M.

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Magrin, S.

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

Mahon, S.

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

Maniewski, R.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis,” Opto-Electron. Rev. 12, 255–262 (2004).

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

Marota, J. J.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

Mathias, C.

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

McLeod, A. D.

A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
[Crossref]

McLeod, J.

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

Melander, O.

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Meyer, D.

L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, “Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health,” OMICS 18(8), 513–523 (2014).
[Crossref]

Milej, D.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Milstein, D. M.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

Minicucci, F.

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

Miyamoto, Y.

A. Kikukawa, A. Kobayashi, and Y. Miyamoto, “Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers,” Dyn. Med. 7(1), 10 (2008).
[Crossref]

A. Onozawa, A. Kikukawa, and Y. Miyamoto, “A new evaluation method for + Gz tolerance with loratadine by using a near-infrared spectroscopy,” Dyn. Med. 7(1), 3 (2008).
[Crossref]

A. Kobayashi and Y. Miyamoto, “In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy,” Aviat Space Environ. Med. 71, 177–183 (2000).

Moerman, A.

A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
[Crossref]

Moll, F. L.

C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
[Crossref]

Moll, H. A.

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

Moller, M.

Montgomery, L. D.

A. Polese, H. Sandler, and L. D. Montgomery, “Hemodynamic responses to seated and supine lower body negative pressure: comparison with + Gz acceleration,” Aviat Space Environ. Med. 63(6), 467–475 (1992).

Moons, K. G. M.

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

Muhamadali, H.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Murthy, G.

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

Nadland, I. H.

D. D. Sheriff, I. H. Nadland, and K. Toska, “Role of sympathetic responses on the hemodynamic consequences of rapid changes in posture in humans,” J. Appl. Physiol. 108(3), 523–532 (2010).
[Crossref]

Nakadate, T.

K. Kurihara, A. Kikukawa, A. Kobayashi, and T. Nakadate, “Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study,” J. Appl. Physiol. 103(4), 1326–1331 (2007).
[Crossref]

Newham, D. J.

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

Nielsen, H. B.

H. B. Nielsen, “Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery,” Front Physiol. 5, 93 (2014).
[Crossref]

Norfleet, W. T.

K. V. Kumar and W. T. Norfleet, “Issues on human acceleration tolerance after long-duration space flights,” in NASA Technical Memorandum (NASA Johnson Space Center, 1992).

Nosek, A.

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

Obrig, H.

Onaral, B.

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

Onozawa, A.

A. Onozawa, A. Kikukawa, and Y. Miyamoto, “A new evaluation method for + Gz tolerance with loratadine by using a near-infrared spectroscopy,” Dyn. Med. 7(1), 3 (2008).
[Crossref]

Osann, K.

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

Palmer, M. D.

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

Panton, L. B.

L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
[Crossref]

Pennekamp, C. W.

C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
[Crossref]

Polese, A.

A. Polese, H. Sandler, and L. D. Montgomery, “Hemodynamic responses to seated and supine lower body negative pressure: comparison with + Gz acceleration,” Aviat Space Environ. Med. 63(6), 467–475 (1992).

Prahl, S. A.

S. A. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1999).

Prasad, A.

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

Putt, M. E.

Rickards, C. A.

V. L. Kay and C. A. Rickards, “The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(4), R375–R383 (2016).
[Crossref]

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

V. L. Kay and C. A. Rickards, “Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage,” Physiol Rep. 3(11), e12640 (2015).
[Crossref]

C. Hinojosa-Laborde, C. A. Rickards, K. L. Ryan, and V. A. Convertino, “Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects,” Front Physiol. 2, 85 (2011).
[Crossref]

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

Rigamonti, A.

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

Rinneberg, H.

Rivas, E.

Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
[Crossref]

Roessler, A.

N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).

Rosenthal, G.

G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
[Crossref]

Rossler, A.

Z. Laszlo, A. Rossler, and H. G. Hinghofer-Szalkay, “Cardiovascular changes during and after different LBNP levels in men,” Aviat Space Environ. Med. 69, 32–39 (1998).

Ryan, K. L.

C. Hinojosa-Laborde, C. A. Rickards, K. L. Ryan, and V. A. Convertino, “Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects,” Front Physiol. 2, 85 (2011).
[Crossref]

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

W. H. Cooke, K. L. Ryan, and V. A. Convertino, “Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans,” J. Appl. Physiol. 96(4), 1249–1261 (2004).
[Crossref]

Saito, M.

T. Hachiya, I. Hashimoto, M. Saito, and A. P. Blaber, “Peripheral vascular responses of men and women to LBNP,” Aviat Space Environ. Med. 83(2), 118–124 (2012).
[Crossref]

Sandler, H.

A. Polese, H. Sandler, and L. D. Montgomery, “Hemodynamic responses to seated and supine lower body negative pressure: comparison with + Gz acceleration,” Aviat Space Environ. Med. 63(6), 467–475 (1992).

Sawosz, P.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Scandroglio, M.

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

Schlader, Z. J.

Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
[Crossref]

Schneditz, D.

N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).

Scott, J. M.

B. T. A. Esch, J. M. Scott, and D. E. R. Warburton, “Construction of a lower body negative pressure chamber,” Adv. Physiol. Educ. 31(1), 76–81 (2007).
[Crossref]

Seidl, S.

W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
[Crossref]

Seo, Y.-W.

Serrador, J. M.

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

Shah, Q.

Sheriff, D. D.

D. D. Sheriff, I. H. Nadland, and K. Toska, “Role of sympathetic responses on the hemodynamic consequences of rapid changes in posture in humans,” J. Appl. Physiol. 108(3), 523–532 (2010).
[Crossref]

Shewokis, P. A.

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

Shibata, S.

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

Shoemaker, K.

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

Shoshan, Y.

G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
[Crossref]

Siamwala, J. H.

J. H. Siamwala, B. R. Macias, P. C. Lee, and A. R. Hargens, “Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure,” Physiol Rep. 5(4), e13143 (2017).
[Crossref]

Singh, V.

G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
[Crossref]

Sitole, L.

L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, “Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health,” OMICS 18(8), 513–523 (2014).
[Crossref]

Skibniewski, F. W.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

Skow, R. J.

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

Slungaard, E.

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

Smietanowski, M.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

Smith, A. H.

C. F. Kelly and A. H. Smith, “Chronic Acceleration Studies - Physical responses to artificial Alterations in Weight,” NASA Contractor Report CR-441 (University of California, 1966).

Smith, M.

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
[Crossref]

Sobiech, M.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

Sobotnicki, A.

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

Soller, B. R.

Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
[Crossref]

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

Soyemi, O. O.

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

Steffens, F.

L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, “Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health,” OMICS 18(8), 513–523 (2014).
[Crossref]

Steinbrink, J.

Steyerberg, E. W.

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

Strijbos, D. W.

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

Szufladowicz, E.

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

Tachtsidis, I.

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

Taseveska, G.

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Taylor, N. A. S.

O. Eiken, M. E. Keramidas, N. A. S. Taylor, and M. Grönkvist, “Intraocular pressure and cerebral oxygenation during prolonged headward acceleration,” Eur. J. Appl. Physiol. 117(1), 61–72 (2017).
[Crossref]

Thaker, S.

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

Themelis, G.

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

Tong, A.

A. Kobayashi, A. Tong, and A. Kikukawa, “Pilot cerebral oxygen status during air-to-air combat maneuvering,” Aviat Space Environ. Med. 73, 919–924 (2002).

Toska, K.

D. D. Sheriff, I. H. Nadland, and K. Toska, “Role of sympathetic responses on the hemodynamic consequences of rapid changes in posture in humans,” J. Appl. Physiol. 108(3), 523–532 (2010).
[Crossref]

Tromberg, B. J.

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

Turner, M. L.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Tymko, M. M.

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

van Bommel, J.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

van den Meiracker, A. H.

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Vandenplas, G.

A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
[Crossref]

Villringer, A.

Wabnitz, H.

Walczak, F.

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

Walz, J. M.

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

Wang, L.

L. Wang, H. Ayaz, and M. Izzetoglu, “Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications,” J. Biophotonics 12(11), e201900175 (2019).
[Crossref]

Warburton, D. E. R.

B. T. A. Esch, J. M. Scott, and D. E. R. Warburton, “Construction of a lower body negative pressure chamber,” Adv. Physiol. Educ. 31(1), 76–81 (2007).
[Crossref]

Watenpaugh, D. E.

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

Watkins, W.

W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
[Crossref]

Weigl, W.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Wojtkiewicz, S.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Wouters, P. F.

A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
[Crossref]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Xu, Y.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Yang, Y.

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

Yodh, A. G.

Young, A. H.

J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
[Crossref]

Yu, G.

Zbiec, A.

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis,” Opto-Electron. Rev. 12, 255–262 (2004).

Zhou, C.

Adv. Physiol. Educ. (1)

B. T. A. Esch, J. M. Scott, and D. E. R. Warburton, “Construction of a lower body negative pressure chamber,” Adv. Physiol. Educ. 31(1), 76–81 (2007).
[Crossref]

Aerosp. Med. Hum. Perform. (2)

E. Slungaard, J. McLeod, N. D. C. Green, A. Kiran, D. J. Newham, and S. D. R. Harridge, “Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force,” Aerosp. Med. Hum. Perform. 88(6), 550–555 (2017).
[Crossref]

J. J. Durocher, J. R. Carter, W. H. Cooke, A. H. Young, and M. H. Harwood, “Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress,” Aerosp. Med. Hum. Perform. 86(8), 688–692 (2015).
[Crossref]

Am. J. Physiol. Heart C. (1)

Q. Fu, S. Shibata, J. L. Hastings, A. Prasad, M. D. Palmer, and B. D. Levine, “Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans,” Am. J. Physiol. Heart C. 296(2), H480–H488 (2009).
[Crossref]

Am. J. Physiol. Regul. Integr. Comp. Physiol. (2)

V. L. Kay and C. A. Rickards, “The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(4), R375–R383 (2016).
[Crossref]

Z. J. Schlader, E. Rivas, B. R. Soller, V. A. Convertino, and C. G. Crandall, “Tissue oxygen saturation during hyperthermic progressive central hypovolemia,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(6), R731–R736 (2014).
[Crossref]

Anal. Chim. Acta (1)

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre, “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta 879, 10–23 (2015).
[Crossref]

Anesth Analg. (1)

A. D. McLeod, F. Igielman, C. Elwell, M. Cope, and M. Smith, “Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury,” Anesth Analg. 97, 851–856 (2003).
[Crossref]

Ann. Intern. Med. (1)

A. C. Justice, K. E. Covinsky, and J. A. Berlin, “Assessing the Generalizability of Prognostic Information,” Ann. Intern. Med. 130(6), 515–524 (1999).
[Crossref]

Appl. Opt. (1)

Aviat Space Environ. Med. (7)

Z. Laszlo, A. Rossler, and H. G. Hinghofer-Szalkay, “Cardiovascular changes during and after different LBNP levels in men,” Aviat Space Environ. Med. 69, 32–39 (1998).

K. M. Alvim, “Greyout, blackout, and G-loss of consciousness in the Brazilian Air Force: a 1991-92 survey,” Aviat Space Environ. Med. 66, 675–677 (1995).

A. Polese, H. Sandler, and L. D. Montgomery, “Hemodynamic responses to seated and supine lower body negative pressure: comparison with + Gz acceleration,” Aviat Space Environ. Med. 63(6), 467–475 (1992).

T. Hachiya, I. Hashimoto, M. Saito, and A. P. Blaber, “Peripheral vascular responses of men and women to LBNP,” Aviat Space Environ. Med. 83(2), 118–124 (2012).
[Crossref]

A. Kobayashi and Y. Miyamoto, “In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy,” Aviat Space Environ. Med. 71, 177–183 (2000).

A. Kobayashi, A. Tong, and A. Kikukawa, “Pilot cerebral oxygen status during air-to-air combat maneuvering,” Aviat Space Environ. Med. 73, 919–924 (2002).

N. Goswami, J. A. Loeppky, and H. Hinghofer-Szalkay, “LBNP: past protocols and technical considerations for experimental design,” Aviat Space Environ. Med. 79(5), 459–471 (2008).
[Crossref]

Br. J. Anaesth (1)

A. Moerman, G. Vandenplas, T. Bove, P. F. Wouters, and S. G. De Hert, “Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting,” Br. J. Anaesth 110(2), 258–265 (2013).
[Crossref]

Clin. Physiol. (1)

L. B. Panton, W. D. Franke, D. A. Bleil, S. M. Baier, and D. S. King, “Effects of resistance training on cardiovascular responses to lower body negative pressure in the elderly,” Clin. Physiol. 21(5), 605–611 (2001).
[Crossref]

Dyn. Med. (2)

A. Kikukawa, A. Kobayashi, and Y. Miyamoto, “Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers,” Dyn. Med. 7(1), 10 (2008).
[Crossref]

A. Onozawa, A. Kikukawa, and Y. Miyamoto, “A new evaluation method for + Gz tolerance with loratadine by using a near-infrared spectroscopy,” Dyn. Med. 7(1), 3 (2008).
[Crossref]

Eur. J. Appl. Physiol. (1)

O. Eiken, M. E. Keramidas, N. A. S. Taylor, and M. Grönkvist, “Intraocular pressure and cerebral oxygenation during prolonged headward acceleration,” Eur. J. Appl. Physiol. 117(1), 61–72 (2017).
[Crossref]

Eur. J. Heart Fail. (1)

H. H. Holm, E. Bachus, V. Hamrefors, O. Melander, G. Taseveska, A. Fedorowski, and M. Magnusson, “Changes in hemodynamic parameters and cerebral oximetry during head-up tilt test in heart failure patients: the HARVEST study,” Eur. J. Heart Fail. 19(4), 466–468 (2017).
[Crossref]

Eur. J. Vasc. Endovasc. Surg. (1)

C. W. Pennekamp, M. L. Bots, L. J. Kappelle, F. L. Moll, and G. J. de Borst, “The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review,” Eur. J. Vasc. Endovasc. Surg. 38(5), 539–545 (2009).
[Crossref]

Front Physiol. (2)

H. B. Nielsen, “Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery,” Front Physiol. 5, 93 (2014).
[Crossref]

C. Hinojosa-Laborde, C. A. Rickards, K. L. Ryan, and V. A. Convertino, “Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects,” Front Physiol. 2, 85 (2011).
[Crossref]

Indian J. Physiol. Pharmacol. (1)

M. B. Dikshit, “Lower-body suction and cardiovascular reflexes: physiological and applied considerations,” Indian J. Physiol. Pharmacol. 34, 3–12 (1990).

Intensive Care Med. (1)

S. A. Bartels, R. Bezemer, F. J. de Vries, D. M. Milstein, A. Lima, T. G. Cherpanath, A. H. van den Meiracker, J. van Bommel, M. Heger, J. M. Karemaker, and C. Ince, “Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure,” Intensive Care Med. 37(4), 671–677 (2011).
[Crossref]

J. Appl. Physiol. (7)

W. Watkins, A. R. Hargens, S. Seidl, E. M. Clary, and B. R. Macias, “Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt,” J. Appl. Physiol. 123(1), 260–266 (2017).
[Crossref]

D. D. Sheriff, I. H. Nadland, and K. Toska, “Role of sympathetic responses on the hemodynamic consequences of rapid changes in posture in humans,” J. Appl. Physiol. 108(3), 523–532 (2010).
[Crossref]

B. R. Soller, Y. Yang, O. O. Soyemi, K. L. Ryan, C. A. Rickards, J. M. Walz, S. O. Heard, and V. A. Convertino, “Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans,” J. Appl. Physiol. 104(2), 475–481 (2008).
[Crossref]

W. H. Cooke, K. L. Ryan, and V. A. Convertino, “Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans,” J. Appl. Physiol. 96(4), 1249–1261 (2004).
[Crossref]

K. Kurihara, A. Kikukawa, A. Kobayashi, and T. Nakadate, “Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study,” J. Appl. Physiol. 103(4), 1326–1331 (2007).
[Crossref]

D. E. Watenpaugh, G. A. Breit, T. M. Buckley, R. E. Ballard, G. Murthy, and A. R. Hargens, “Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP,” J. Appl. Physiol. 96(6), 2153–2160 (2004).
[Crossref]

S. Houtman, J. M. Serrador, W. N. Colier, D. W. Strijbos, K. Shoemaker, and M. T. Hopman, “Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals,” J. Appl. Physiol. 91(5), 2199–2204 (2001).
[Crossref]

J. Biomed. Opt. (2)

G. Themelis, H. D’Arceuil, S. G. Diamond, S. Thaker, T. J. Huppert, D. A. Boas, and M. A. Franceschini, “Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations,” J. Biomed. Opt. 12(1), 014033 (2007).
[Crossref]

J. Lee, J. G. Kim, S. Mahon, B. J. Tromberg, K. L. Ryan, V. A. Convertino, C. A. Rickards, K. Osann, and M. Brenner, “Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy,” J. Biomed. Opt. 13(6), 064027 (2008).
[Crossref]

J. Biophotonics (1)

L. Wang, H. Ayaz, and M. Izzetoglu, “Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications,” J. Biophotonics 12(11), e201900175 (2019).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

J. Clin. Anesth (1)

A. Rigamonti, M. Scandroglio, F. Minicucci, S. Magrin, A. Carozzo, and A. Casati, “A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy,” J. Clin. Anesth 17(6), 426–430 (2005).
[Crossref]

J. Clin. Epidemiol. (1)

S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derksen-Lubsen, D. E. Grobbee, and K. G. M. Moons, “External validation is necessary in prediction research,” J. Clin. Epidemiol. 56(9), 826–832 (2003).
[Crossref]

J. Neurosurg. (1)

G. Rosenthal, A. Furmanov, E. Itshayek, Y. Shoshan, and V. Singh, “Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury,” J. Neurosurg. 120(4), 901–907 (2014).
[Crossref]

J. Opt. Soc. Korea (1)

Neuroimage (1)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[Crossref]

OMICS (1)

L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, “Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health,” OMICS 18(8), 513–523 (2014).
[Crossref]

Opt. Express (1)

Opto-Electron. Rev. (1)

R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis,” Opto-Electron. Rev. 12, 255–262 (2004).

Phys. Med. Biol. (2)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

Physiol Rep. (3)

V. L. Kay and C. A. Rickards, “Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage,” Physiol Rep. 3(11), e12640 (2015).
[Crossref]

J. H. Siamwala, B. R. Macias, P. C. Lee, and A. R. Hargens, “Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure,” Physiol Rep. 5(4), e13143 (2017).
[Crossref]

M. M. Tymko, C. A. Rickards, R. J. Skow, N. C. Ingram-Cotton, M. K. Howatt, and T. A. Day, “The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations,” Physiol Rep. 4(17), e12957 (2016).
[Crossref]

Physiol Res. (1)

N. Goswami, E. Grasser, A. Roessler, D. Schneditz, and H. Hinghofer-Szalkay, “The cardiovascular response to lower body negative pressure in humans depends on seal location,” Physiol Res. 58, 311–318 (2009).

Physiol. Meas. (2)

K. Hunt, I. Tachtsidis, K. Bleasdale-Barr, C. Elwell, C. Mathias, and M. Smith, “Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure,” Physiol. Meas. 27(9), 777–785 (2006).
[Crossref]

E. Szufladowicz, R. Maniewski, E. Kozluk, A. Zbiec, A. Nosek, and F. Walczak, “Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope,” Physiol. Meas. 25(4), 823–836 (2004).
[Crossref]

Physiol. Rev. (1)

N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and V. A. Convertino, “Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation,” Physiol. Rev. 99(1), 807–851 (2019).
[Crossref]

Sci. Rep. (1)

L. Dziuda, M. Krej, M. Smietanowski, A. Sobotnicki, M. Sobiech, P. Kwasny, A. Brzozowska, P. Baran, K. Kowalczuk, and F. W. Skibniewski, “Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure,” Sci. Rep. 8(1), 7793 (2018).
[Crossref]

Other (6)

A. Sobotnicki, L. Juszynski, M. Sobiech, L. Dziuda, F. W. Skibniewski, P. Kwasny, and A. Brzozowska, “Bearing position changing system, preferably of the verticalisation table,” Polish patent 224837 (2014).

K. V. Kumar and W. T. Norfleet, “Issues on human acceleration tolerance after long-duration space flights,” in NASA Technical Memorandum (NASA Johnson Space Center, 1992).

C. F. Kelly and A. H. Smith, “Chronic Acceleration Studies - Physical responses to artificial Alterations in Weight,” NASA Contractor Report CR-441 (University of California, 1966).

P. B. Benni, J. K. J. Li, B. Chen, J. Cammarota, and D. W. Amory, “Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot + Gz Acceleration Symptoms,” in Oxygen Transport to Tissue XXIV, J. F. Dunn and H. M. Swartz, eds. (Springer, US, 2003), pp. 381–389.

H. Ayaz, M. P. Çakir, K. Izzetoğlu, A. Curtin, P. A. Shewokis, S. C. Bunce, and B. Onaral, “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), 1–11.

S. A. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. a) 6-channel NIRSI system integrated into the ORTHO-LBNP station. b) The NIRSI setup. 1 – emitting module; 2 – detecting module; 3 – signal processing and communication module; 4 – power supply.
Fig. 2.
Fig. 2. a) Source-detector pairs (optodes) located on a surface of the subjects head; b) schematic locations of the optodes: o – detecting point, x – emitting point.
Fig. 3.
Fig. 3. Scheme of the measurement protocol at the ORTHO-LBNP station.
Fig. 4.
Fig. 4. Selected example of changes in the concentration of total hemoglobin (ΔCHbTot) calculated for the entire course of the experiment consisting of phase ORTHO, phase LBNP and triple-phase ORTHO + LBNP: the tilting combined with a sudden drop of pressure around the lower part of the body. The ΔC1-9 parameters are calculated as the maximum amplitudes of CHbTot changes as a response to individual stimuli.
Fig. 5.
Fig. 5. Upper panel: selected example of changes in the concentration of oxy- (ΔCHbO2, red line), deoxy- (ΔCHb, blue line) and total hemoglobin (ΔCHbTot, black line) concentrations observed during the entire course of the experiment consisting of ORTO phase, LBNP phase and three repetitions of ORTO + LBNP phase: tilting combined with sudden drop of a pressure around the lower part of the body. Measurement was carried out using a NIRSI device for the optode positioned above the left hemisphere of the subject’s forehead and 3 cm of source-detector separation. Bottom panel: changes in tilting angle and changes in LBNP chamber pressure.
Fig. 6.
Fig. 6. Box and whisker plot for all calculated parameters ΔC1-9, presented separately for the source-detector separations r = 3 and 2 cm for pilots N = 12 (red and pink plot) and healthy volunteers N = 12 (blue and cyan plot). The ΔC subscripts indicate the applied stimuli: 1,2 – ORTHO, 3 – LBNP, 4-9 – ORTHO + LBNP. The range of values of large rectangles: 25% -75%, the horizontal line inside the rectangle determines the median value. Squares represent the mean values of change in total hemoglobin concentration.
Fig. 7.
Fig. 7. Box and whisker plot for parameters Δ(ΔC1-9), calculated on the basis of differences in CHbTot changes for the source-detector separations of 3 cm and 2 cm for study group N = 12 (pilots - red rectangles) and for control group N = 12 (healthy volunteers - blue rectangles). The ΔC subscripts indicate the applied stimuli: 1,2 – ORTHO, 3 – LBNP, 4-9 – ORTHO + LBNP. The range of values of large rectangles: 25% -75%, the horizontal line inside the rectangle determines the median value. Squares represent the mean values of change in total hemoglobin concentration.
Fig. 8.
Fig. 8. The scores plots of the two-component OPLS-DA for a) Parameter set 3 and b) Parameter Set 4 t0[1] represent within-class variation in the first orthogonal component, whereas t[1] represents between-class variation in the first predictive component. Ellipse represents Hotelling T2 with 95% confidence in score plots.

Tables (1)

Tables Icon

Table 1. List of recent studies where the tissue oxygenation parameters were monitored while LBNP and/or HUT/HDT using the NIRS technique on the head and/or on the muscles. CW NIRS, FD NIRS, SRS NIRS are continuous wave, frequency-domain and spatially-resolved NIRS, respectively. M- male, F- female.

Metrics