Abstract

We propose a novel method and system that utilizes a popular smartphone to realize hyperspectral imaging for analyzing skin morphological features and monitoring hemodynamics. The imaging system works based on a built-in RGB camera and flashlight on the smartphone. We apply Wiener estimation to transform the acquired RGB-mode images into “pseudo”-hyperspectral images with 16 wavebands, covering a visible range from 470nm to 620nm. The processing method uses weighted subtractions between wavebands to extract absorption information caused by specific chromophores within skin tissue, mainly including hemoglobin and melanin. Based on the extracted absorption information of hemoglobin, we conduct real-time monitoring experiments in the skin to measure heart rate and to observe skin activities during a vascular occlusion event. Compared with expensive hyperspectral imaging systems, the smartphone-based system delivers similar results but with very-high imaging resolution. Besides, it is easy to operate, very cost-effective and has a wider customer base. The use of an unmodified smartphone to realize hyperspectral imaging promises a possibility to bring a hyperspectral analysis of skin out from laboratory and clinical wards to daily life, which may also impact on healthcare in low resource settings and rural areas.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of skin morphological features and real-time monitoring using snapshot hyperspectral imaging

Qinghua He and Ruikang K. Wang
Biomed. Opt. Express 10(11) 5625-5638 (2019)

Data-driven imaging of tissue inflammation using RGB-based hyperspectral reconstruction toward personal monitoring of dermatologic health

Taehoon Kim, Michelle A. Visbal-Onufrak, Raymond L. Konger, and Young L. Kim
Biomed. Opt. Express 8(11) 5282-5296 (2017)

Hyperspectral imaging of human skin aided by artificial neural networks

Evgeny Zherebtsov, Viktor Dremin, Alexey Popov, Alexander Doronin, Daria Kurakina, Mikhail Kirillin, Igor Meglinski, and Alexander Bykov
Biomed. Opt. Express 10(7) 3545-3559 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Zherebtsov, V. Dremin, A. Popov, A. Doronin, D. Kurakina, M. Kirillin, I. Meglinski, and A. Bykov, “Hyperspectral imaging of human skin aided by artificial neural networks,” Biomed. Opt. Express 10(7), 3545–3559 (2019).
    [Crossref]
  2. A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
    [Crossref]
  3. D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21(4), 4826–4840 (2013).
    [Crossref]
  4. D. Jakovels, J. Spigulis, and I. Saknite, “Multi-spectral mapping of in vivo skin hemoglobin and melanin,” Proc. SPIE 7715, 77152Z (2010).
    [Crossref]
  5. F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
    [Crossref]
  6. R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
    [Crossref]
  7. S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, and D. L. Farkas, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
    [Crossref]
  8. N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
    [Crossref]
  9. X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
    [Crossref]
  10. C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
    [Crossref]
  11. I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
    [Crossref]
  12. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
    [Crossref]
  13. W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
    [Crossref]
  14. J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
    [Crossref]
  15. B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
    [Crossref]
  16. P.-J. Lapray, J.-B. Thomas, and P. Gouton, “High dynamic range spectral imaging pipeline for multispectral filter array cameras,” Sensors 17(6), 1281 (2017).
    [Crossref]
  17. J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
    [Crossref]
  18. L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
    [Crossref]
  19. E. Chao, C. K. Meenan, and L. K. Ferris, “Smartphone-based applications for skin monitoring and melanoma detection,” Dermatol. Clin. 35(4), 551–557 (2017).
    [Crossref]
  20. H.-L. Shen, J. H. Xin, and S.-J. Shao, “Improved reflectance reconstruction for multispectral imaging by combining different techniques,” Opt. Express 15(9), 5531–5536 (2007).
    [Crossref]
  21. H.-L. Shen and J. H. Xin, “Spectral characterization of a color scanner based on optimized adaptive estimation,” J. Opt. Soc. Am. A 23(7), 1566–1569 (2006).
    [Crossref]
  22. S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
    [Crossref]
  23. I. Nishidate, T. Maeda, K. Niizeki, and Y. Aizu, “Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method,” Sensors 13(6), 7902–7915 (2013).
    [Crossref]
  24. S. Chen, G. Wang, X. Cui, and Q. Liu, “Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging,” Opt. Express 25(2), 1005–1018 (2017).
    [Crossref]
  25. D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmography as a method to detect heart rate during rest and exercise,” J. Med. Eng. Technol. 39(5), 264–271 (2015).
    [Crossref]
  26. J. H. G. M. Klaessens, M. Nelisse, R. M. Verdaasdonk, and H. J. Noordmans, “Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies,” Proc. SPIE 8572, 857207 (2013).
    [Crossref]
  27. K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
    [Crossref]
  28. S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
    [Crossref]
  29. A. R. Matias, M. Ferreira, P. Costa, and P. Neto, “Skin colour, skin redness and melanin biometric measurements: comparison study between Antera® 3D, Mexameterand Colorimeter,” Skin Res. Technol. 21(3), 346–362 (2015).
    [Crossref]
  30. J. C. Furlan, J. Fang, and F. L. Silver, “Acute ischemic stroke and abnormal blood hemoglobin concentration,” Acta Neurol. Scand. 134(2), 123–130 (2016).
    [Crossref]
  31. S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
    [Crossref]
  32. T. H. Nasti and L. Timares, “MC 1R, Eumelanin and Pheomelanin: Their role in determining the susceptibility to skin cancer,” Photochem. Photobiol. 91(1), 188–200 (2015).
    [Crossref]
  33. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
    [Crossref]
  34. E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref]
  35. I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
    [Crossref]
  36. F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
    [Crossref]
  37. Y. Takahashi, Y. Fukushima, K. Kondo, and M. Ichihashi, “Facial skin photo-aging and development of hyperpigmented spots from children to middle-aged Japanese woman,” Skin Res. Technol. 23(4), 613–618 (2017).
    [Crossref]

2019 (1)

2018 (4)

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
[Crossref]

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

2017 (7)

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

E. Chao, C. K. Meenan, and L. K. Ferris, “Smartphone-based applications for skin monitoring and melanoma detection,” Dermatol. Clin. 35(4), 551–557 (2017).
[Crossref]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

P.-J. Lapray, J.-B. Thomas, and P. Gouton, “High dynamic range spectral imaging pipeline for multispectral filter array cameras,” Sensors 17(6), 1281 (2017).
[Crossref]

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

S. Chen, G. Wang, X. Cui, and Q. Liu, “Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging,” Opt. Express 25(2), 1005–1018 (2017).
[Crossref]

Y. Takahashi, Y. Fukushima, K. Kondo, and M. Ichihashi, “Facial skin photo-aging and development of hyperpigmented spots from children to middle-aged Japanese woman,” Skin Res. Technol. 23(4), 613–618 (2017).
[Crossref]

2016 (4)

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, and D. L. Farkas, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
[Crossref]

J. C. Furlan, J. Fang, and F. L. Silver, “Acute ischemic stroke and abnormal blood hemoglobin concentration,” Acta Neurol. Scand. 134(2), 123–130 (2016).
[Crossref]

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

2015 (7)

S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
[Crossref]

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
[Crossref]

A. R. Matias, M. Ferreira, P. Costa, and P. Neto, “Skin colour, skin redness and melanin biometric measurements: comparison study between Antera® 3D, Mexameterand Colorimeter,” Skin Res. Technol. 21(3), 346–362 (2015).
[Crossref]

T. H. Nasti and L. Timares, “MC 1R, Eumelanin and Pheomelanin: Their role in determining the susceptibility to skin cancer,” Photochem. Photobiol. 91(1), 188–200 (2015).
[Crossref]

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmography as a method to detect heart rate during rest and exercise,” J. Med. Eng. Technol. 39(5), 264–271 (2015).
[Crossref]

2014 (2)

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

2013 (3)

I. Nishidate, T. Maeda, K. Niizeki, and Y. Aizu, “Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method,” Sensors 13(6), 7902–7915 (2013).
[Crossref]

D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21(4), 4826–4840 (2013).
[Crossref]

J. H. G. M. Klaessens, M. Nelisse, R. M. Verdaasdonk, and H. J. Noordmans, “Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies,” Proc. SPIE 8572, 857207 (2013).
[Crossref]

2012 (3)

2010 (1)

D. Jakovels, J. Spigulis, and I. Saknite, “Multi-spectral mapping of in vivo skin hemoglobin and melanin,” Proc. SPIE 7715, 77152Z (2010).
[Crossref]

2008 (1)

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

2007 (2)

W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref]

H.-L. Shen, J. H. Xin, and S.-J. Shao, “Improved reflectance reconstruction for multispectral imaging by combining different techniques,” Opt. Express 15(9), 5531–5536 (2007).
[Crossref]

2006 (2)

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

H.-L. Shen and J. H. Xin, “Spectral characterization of a color scanner based on optimized adaptive estimation,” J. Opt. Soc. Am. A 23(7), 1566–1569 (2006).
[Crossref]

Abdlaty, R.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Agu, E.

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

Aizu, Y.

I. Nishidate, T. Maeda, K. Niizeki, and Y. Aizu, “Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method,” Sensors 13(6), 7902–7915 (2013).
[Crossref]

Alfieri, D.

Anqi, L.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Ares, M.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Bachmann, H. S.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Bearman, G. H.

W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref]

Berzina, A.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

Blanch, C.

B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
[Crossref]

Boor, P.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Booth, N.

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Brondeel, S.

K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
[Crossref]

Bruscino, N.

Burton, N. C.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Bykov, A.

E. Zherebtsov, V. Dremin, A. Popov, A. Doronin, D. Kurakina, M. Kirillin, I. Meglinski, and A. Bykov, “Hyperspectral imaging of human skin aided by artificial neural networks,” Biomed. Opt. Express 10(7), 3545–3559 (2019).
[Crossref]

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

Cannarozzo, G.

Carneiro, C.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Chao, E.

E. Chao, C. K. Meenan, and L. K. Ferris, “Smartphone-based applications for skin monitoring and melanoma detection,” Dermatol. Clin. 35(4), 551–557 (2017).
[Crossref]

Chen, S.

S. Chen, G. Wang, X. Cui, and Q. Liu, “Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging,” Opt. Express 25(2), 1005–1018 (2017).
[Crossref]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
[Crossref]

Cho, B.-K.

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Cho, D.

Cicchi, R.

Claussen, J.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Colebunders, B.

K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
[Crossref]

Costa, P.

A. R. Matias, M. Ferreira, P. Costa, and P. Neto, “Skin colour, skin redness and melanin biometric measurements: comparison study between Antera® 3D, Mexameterand Colorimeter,” Skin Res. Technol. 21(3), 346–362 (2015).
[Crossref]

Cui, X.

D’Arpa, S.

K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
[Crossref]

de Giorgi, V.

Delpueyo, X.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Derjabo, A.

Di Loro, S.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Diebele, I.

Dimou, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Doerwald-Munoz, L.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Doronin, A.

Dremin, V.

Durkin, A. J.

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Egl, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Engel, M.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Fang, J.

J. C. Furlan, J. Fang, and F. L. Silver, “Acute ischemic stroke and abnormal blood hemoglobin concentration,” Acta Neurol. Scand. 134(2), 123–130 (2016).
[Crossref]

Fang, Q.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Farkas, D. L.

S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, and D. L. Farkas, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
[Crossref]

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Farrell, T. J.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Fawzi, A. A.

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

Ferreira, M.

A. R. Matias, M. Ferreira, P. Costa, and P. Neto, “Skin colour, skin redness and melanin biometric measurements: comparison study between Antera® 3D, Mexameterand Colorimeter,” Skin Res. Technol. 21(3), 346–362 (2015).
[Crossref]

Ferris, L. K.

E. Chao, C. K. Meenan, and L. K. Ferris, “Smartphone-based applications for skin monitoring and melanoma detection,” Dermatol. Clin. 35(4), 551–557 (2017).
[Crossref]

Fink, W.

W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref]

Fonseca, V. A.

S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
[Crossref]

Fujii, K.

D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmography as a method to detect heart rate during rest and exercise,” J. Med. Eng. Technol. 39(5), 264–271 (2015).
[Crossref]

Fukushima, Y.

Y. Takahashi, Y. Fukushima, K. Kondo, and M. Ichihashi, “Facial skin photo-aging and development of hyperpigmented spots from children to middle-aged Japanese woman,” Skin Res. Technol. 23(4), 613–618 (2017).
[Crossref]

Furlan, J. C.

J. C. Furlan, J. Fang, and F. L. Silver, “Acute ischemic stroke and abnormal blood hemoglobin concentration,” Acta Neurol. Scand. 134(2), 123–130 (2016).
[Crossref]

Galaris, D.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Gao, L.

Geelen, B.

B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
[Crossref]

Gonzalez, P.

B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
[Crossref]

Gouton, P.

P.-J. Lapray, J.-B. Thomas, and P. Gouton, “High dynamic range spectral imaging pipeline for multispectral filter array cameras,” Sensors 17(6), 1281 (2017).
[Crossref]

Gretz, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Gueheunneux, S.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Haase, K.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Hayward, J. E.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Helfrich, I.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Hempe, J. M.

S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
[Crossref]

Heng, X.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Herpich, I.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Hillen, U.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Humayun, M. S.

W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref]

Ibler, E.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Ichihashi, M.

Y. Takahashi, Y. Fukushima, K. Kondo, and M. Ichihashi, “Facial skin photo-aging and development of hyperpigmented spots from children to middle-aged Japanese woman,” Skin Res. Technol. 23(4), 613–618 (2017).
[Crossref]

Ignotz, R.

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

Jakovels, D.

D. Jakovels, J. Spigulis, and I. Saknite, “Multi-spectral mapping of in vivo skin hemoglobin and melanin,” Proc. SPIE 7715, 77152Z (2010).
[Crossref]

Jang, J. E.

Je, M.

Jiang, B.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Johnson, W. R.

W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref]

Jomier, M.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Kaluzny, J.

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

Kang, S.

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Kapostinsh, J.

Kapsokalyvas, D.

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Kelly, K. M.

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Kim, G.

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Kim, J.

Kim, M.

S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, and D. L. Farkas, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
[Crossref]

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Kim, S.

Kirillin, M.

Klaessens, J. H. G. M.

J. H. G. M. Klaessens, M. Nelisse, R. M. Verdaasdonk, and H. J. Noordmans, “Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies,” Proc. SPIE 8572, 857207 (2013).
[Crossref]

Kondo, K.

Y. Takahashi, Y. Fukushima, K. Kondo, and M. Ichihashi, “Facial skin photo-aging and development of hyperpigmented spots from children to middle-aged Japanese woman,” Skin Res. Technol. 23(4), 613–618 (2017).
[Crossref]

Kränzlin, B.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Kröger, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Kurakina, D.

Kuzmina, I.

Lambrechts, A.

B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
[Crossref]

Lapray, P.-J.

P.-J. Lapray, J.-B. Thomas, and P. Gouton, “High dynamic range spectral imaging pipeline for multispectral filter array cameras,” Sensors 17(6), 1281 (2017).
[Crossref]

Lee, B.

Lee, D. H.

Lee, K.

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Leyh, J.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Li, H.

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

Li, L.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Li, S.

S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
[Crossref]

Lihachev, A.

Lim, J.

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Linming, F.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Litman, L. L.

D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmography as a method to detect heart rate during rest and exercise,” J. Med. Eng. Technol. 39(5), 264–271 (2015).
[Crossref]

Liu, Q.

S. Chen, G. Wang, X. Cui, and Q. Liu, “Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging,” Opt. Express 25(2), 1005–1018 (2017).
[Crossref]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
[Crossref]

Liu, S.

S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
[Crossref]

Liu, W.

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

MacKinnon, N.

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Madooei, A.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Maeda, T.

I. Nishidate, T. Maeda, K. Niizeki, and Y. Aizu, “Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method,” Sensors 13(6), 7902–7915 (2013).
[Crossref]

Majewski, S.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Malvehy, J.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Maly, T.

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Martini, M. C.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Massi, D.

Matias, A. R.

A. R. Matias, M. Ferreira, P. Costa, and P. Neto, “Skin colour, skin redness and melanin biometric measurements: comparison study between Antera® 3D, Mexameterand Colorimeter,” Skin Res. Technol. 21(3), 346–362 (2015).
[Crossref]

McCarter, R. J.

S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
[Crossref]

Meenan, C. K.

E. Chao, C. K. Meenan, and L. K. Ferris, “Smartphone-based applications for skin monitoring and melanoma detection,” Dermatol. Clin. 35(4), 551–557 (2017).
[Crossref]

Meglinski, I.

Mo, C.

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Monstrey, S.

K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
[Crossref]

Morscher, S.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Nardone, B.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Nasti, T. H.

T. H. Nasti and L. Timares, “MC 1R, Eumelanin and Pheomelanin: Their role in determining the susceptibility to skin cancer,” Photochem. Photobiol. 91(1), 188–200 (2015).
[Crossref]

Nelisse, M.

J. H. G. M. Klaessens, M. Nelisse, R. M. Verdaasdonk, and H. J. Noordmans, “Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies,” Proc. SPIE 8572, 857207 (2013).
[Crossref]

Nesper, P.

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

Neto, P.

A. R. Matias, M. Ferreira, P. Costa, and P. Neto, “Skin colour, skin redness and melanin biometric measurements: comparison study between Antera® 3D, Mexameterand Colorimeter,” Skin Res. Technol. 21(3), 346–362 (2015).
[Crossref]

Neudecker, S.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Niizeki, K.

I. Nishidate, T. Maeda, K. Niizeki, and Y. Aizu, “Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method,” Sensors 13(6), 7902–7915 (2013).
[Crossref]

Nishidate, I.

I. Nishidate, T. Maeda, K. Niizeki, and Y. Aizu, “Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method,” Sensors 13(6), 7902–7915 (2013).
[Crossref]

Nkengne, A.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Noguero, F.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Noordmans, H. J.

J. H. G. M. Klaessens, M. Nelisse, R. M. Verdaasdonk, and H. J. Noordmans, “Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies,” Proc. SPIE 8572, 857207 (2013).
[Crossref]

Novak, J.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Oshina, I.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

Park, J.

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

Pavone, F. S.

Pedersen, P. C.

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

Pellacani, G.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Peters, K.

K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
[Crossref]

Pimpinelli, N.

Poeppel, T. D.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Popov, A.

Pucci, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Puig, S.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Rademaker, A. W.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Rey-Barroso, L.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Robic, J.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Rosen, Z.

D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmography as a method to detect heart rate during rest and exercise,” J. Med. Eng. Technol. 39(5), 264–271 (2015).
[Crossref]

Royo, S.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Saager, R.

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Sahli, S.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Saknite, I.

D. Jakovels, J. Spigulis, and I. Saknite, “Multi-spectral mapping of in vivo skin hemoglobin and melanin,” Proc. SPIE 7715, 77152Z (2010).
[Crossref]

Salomatina, E. V.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Sanabria, F.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Sardella, T. C. P.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Schönhals, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

Seroul, P.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Shao, S.-J.

Shen, H.-L.

Silver, F. L.

J. C. Furlan, J. Fang, and F. L. Silver, “Acute ischemic stroke and abnormal blood hemoglobin concentration,” Acta Neurol. Scand. 134(2), 123–130 (2016).
[Crossref]

Smith, R. T.

Spierer, D. K.

D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmography as a method to detect heart rate during rest and exercise,” J. Med. Eng. Technol. 39(5), 264–271 (2015).
[Crossref]

Spigulis, J.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
[Crossref]

D. Jakovels, J. Spigulis, and I. Saknite, “Multi-spectral mapping of in vivo skin hemoglobin and melanin,” Proc. SPIE 7715, 77152Z (2010).
[Crossref]

Stoffels, I.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Strong, D. M.

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

Sushmita, P.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Tack, N.

B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
[Crossref]

Takahashi, Y.

Y. Takahashi, Y. Fukushima, K. Kondo, and M. Ichihashi, “Facial skin photo-aging and development of hyperpigmented spots from children to middle-aged Japanese woman,” Skin Res. Technol. 23(4), 613–618 (2017).
[Crossref]

Thomas, J.-B.

P.-J. Lapray, J.-B. Thomas, and P. Gouton, “High dynamic range spectral imaging pipeline for multispectral filter array cameras,” Sensors 17(6), 1281 (2017).
[Crossref]

Timares, L.

T. H. Nasti and L. Timares, “MC 1R, Eumelanin and Pheomelanin: Their role in determining the susceptibility to skin cancer,” Photochem. Photobiol. 91(1), 188–200 (2015).
[Crossref]

Tkaczyk, T. S.

Tran, G.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Tulu, B.

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

Valeine, L.

Vasefi, F.

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

Verdaasdonk, R. M.

J. H. G. M. Klaessens, M. Nelisse, R. M. Verdaasdonk, and H. J. Noordmans, “Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies,” Proc. SPIE 8572, 857207 (2013).
[Crossref]

Vie, K.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Vilaseca, M.

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

Wang, G.

Wang, L.

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

Wei, H.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

West, D. P.

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Wilson, D. W.

W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref]

Wong, R. K. W.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Xin, J. H.

Yaroslavsky, A. N.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Yeh, S.-C. A.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Yiming, L.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Youn, S.

Yuanyu, C.

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Zerubia, J.

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

Zhang, H. F.

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

Zherebtsov, E.

Zonios, G.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Acta Neurol. Scand. (1)

J. C. Furlan, J. Fang, and F. L. Silver, “Acute ischemic stroke and abnormal blood hemoglobin concentration,” Acta Neurol. Scand. 134(2), 123–130 (2016).
[Crossref]

Biomed. Opt. Express (4)

Curr. Eye Res. (1)

J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi, “Bayer filter snapshot hyperspectral fundus camera for human retinal imaging,” Curr. Eye Res. 42(4), 629–635 (2017).
[Crossref]

Dermatol. Clin. (1)

E. Chao, C. K. Meenan, and L. K. Ferris, “Smartphone-based applications for skin monitoring and melanoma detection,” Dermatol. Clin. 35(4), 551–557 (2017).
[Crossref]

Front. Phys. (1)

R. Abdlaty, L. Doerwald-Munoz, A. Madooei, S. Sahli, S.-C. A. Yeh, J. Zerubia, R. K. W. Wong, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral Imaging and Classification for Grading Skin Erythema,” Front. Phys. 6, 72 (2018).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz, “Smartphone-based wound assessment system for patients with diabetes,” IEEE Trans. Biomed. Eng. 62(2), 477–488 (2015).
[Crossref]

J. Biomed. Opt. (8)

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

F. Vasefi, N. MacKinnon, R. Saager, K. M. Kelly, T. Maly, N. Booth, A. J. Durkin, and D. L. Farkas, “Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy,” J. Biomed. Opt. 21(11), 114001 (2016).
[Crossref]

W. R. Johnson, D. W. Wilson, W. Fink, M. S. Humayun, and G. H. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, and A. Schönhals, “Quantum cascade laser–based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref]

X. Delpueyo, M. Vilaseca, S. Royo, M. Ares, L. Rey-Barroso, F. Sanabria, S. Puig, J. Malvehy, G. Pellacani, and F. Noguero, “Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study,” J. Biomed. Opt. 22(6), 065006 (2017).
[Crossref]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
[Crossref]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

J. Clin. Endocrinol. Metab. (1)

S. Liu, J. M. Hempe, R. J. McCarter, S. Li, and V. A. Fonseca, “Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults,” J. Clin. Endocrinol. Metab. 100(6), 2364–2371 (2015).
[Crossref]

J. Med. Eng. Technol. (1)

D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmography as a method to detect heart rate during rest and exercise,” J. Med. Eng. Technol. 39(5), 264–271 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Plast. Reconstr. Aes. (1)

K. Peters, B. Colebunders, S. Brondeel, S. D’Arpa, and S. Monstrey, “The foot fillet flap for ischial pressure sore reconstruction: A new indication,” J. Plast. Reconstr. Aes. 71(11), 1664–1678 (2018).
[Crossref]

J. Surg. Dermatol. (1)

S. Majewski, C. Carneiro, E. Ibler, P. Boor, G. Tran, M. C. Martini, S. Di Loro, A. W. Rademaker, D. P. West, and B. Nardone, “Digital dermoscopy to determine skin melanin index as an objective indicator of skin pigmentation,” J. Surg. Dermatol. 1(1), 37–42 (2016).
[Crossref]

Opt. Express (3)

Photochem. Photobiol. (1)

T. H. Nasti and L. Timares, “MC 1R, Eumelanin and Pheomelanin: Their role in determining the susceptibility to skin cancer,” Photochem. Photobiol. 91(1), 188–200 (2015).
[Crossref]

Proc. SPIE (3)

J. H. G. M. Klaessens, M. Nelisse, R. M. Verdaasdonk, and H. J. Noordmans, “Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies,” Proc. SPIE 8572, 857207 (2013).
[Crossref]

D. Jakovels, J. Spigulis, and I. Saknite, “Multi-spectral mapping of in vivo skin hemoglobin and melanin,” Proc. SPIE 7715, 77152Z (2010).
[Crossref]

B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lambrechts, “A tiny VIS-NIR snapshot multispectral camera,” Proc. SPIE 9374, 937414 (2015).
[Crossref]

Sci. Transl. Med. (1)

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, and H. S. Bachmann, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7(317), 317ra199 (2015).
[Crossref]

Sensors (3)

I. Nishidate, T. Maeda, K. Niizeki, and Y. Aizu, “Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method,” Sensors 13(6), 7902–7915 (2013).
[Crossref]

P.-J. Lapray, J.-B. Thomas, and P. Gouton, “High dynamic range spectral imaging pipeline for multispectral filter array cameras,” Sensors 17(6), 1281 (2017).
[Crossref]

C. Mo, G. Kim, K. Lee, M. Kim, B.-K. Cho, J. Lim, and S. Kang, “Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging,” Sensors 14(4), 7489–7504 (2014).
[Crossref]

Skin Res. Technol. (4)

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

F. Linming, H. Wei, L. Anqi, C. Yuanyu, X. Heng, P. Sushmita, L. Yiming, and L. Li, “Comparison of two skin imaging analysis instruments: the VISIA® from Canfield vs the ANTERA 3D® CS from Miravex,” Skin Res. Technol. 24(1), 3–8 (2018).
[Crossref]

Y. Takahashi, Y. Fukushima, K. Kondo, and M. Ichihashi, “Facial skin photo-aging and development of hyperpigmented spots from children to middle-aged Japanese woman,” Skin Res. Technol. 23(4), 613–618 (2017).
[Crossref]

A. R. Matias, M. Ferreira, P. Costa, and P. Neto, “Skin colour, skin redness and melanin biometric measurements: comparison study between Antera® 3D, Mexameterand Colorimeter,” Skin Res. Technol. 21(3), 346–362 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the hyperspectral reconstruction calibration system that consists of a smartphone, color chart and 16-channel hyperspectral camera, with sensor structure and sensitive wavebands at each subchannel shown in the top left. (b) The manufacturer’s data of wavelength-dependent sensitivity for 16 bands in the snapshot hyperspectral camera. (c) The RGB image of color chart from the smartphone camera. (d) The raw image of color chart directly exported from the band 9 in the snapshot hyperspectral camera. (e) Spectral power distribution of the smartphone flashlight that is used in this study. (f) Absorption spectra of oxyhemoglobin (oxyHb), deoxyhemoglobin (deoxyHb) and melanin.
Fig. 2.
Fig. 2. Comparison of reflectance in 16 wavebands of reconstructed hyperspectral images from RGB images with initial hyperspectral images from snapshot hyperspectral camera. Shown are 3-representative color blocks. The relative error between initial and reconstructed hyperspectral reflectance of the color blocks in the left, medium and right are 10.95% (the maximum reconstruction error), 4.946% (close to the mean error) and 0.424% (the minimum error) respectively. Black box symbol represents the reflectance from initial hyperspectral images; Red circle symbol corresponds to the reflectance of reconstructed hyperspectral images. The insert of each panel is the RGB image of selected color block.
Fig. 3.
Fig. 3. The image acquisition and extraction of blood and melanin absorption information content from hyperspectral reconstruction with the RGB image from a smartphone camera with illumination from built-in flashlight. (a) Photography during image acquisition with the smartphone camera and built-in flashlight. (b) Initial RGB-mode image of the facial skin captured by the smartphone camera. (c) Blood absorption information map. (d) Melanin absorption information map. Red arrow: skin redness; Black arrow: moles. Blood and melanin absorption maps are coded according to the color bar shown in the right.
Fig. 4.
Fig. 4. Comparison of the imaging performance between snapshot hyperspectral camera and smartphone-based hyperspectral reconstruction. (a) Raw image of the facial skin with moles from band 9 of snapshot hyperspectral camera. (b) Extracted melanin absorption map from snapshot hyperspectral camera. (c) Zoomed-in view of the left white box area of (b). (d) Zoomed-in view of the right white box area of (b). (e) Raw RGB image of the same facial skin captured by the smartphone camera. (f) Extracted melanin absorption map from the smartphone camera. (g) Zoomed-in view of the left white box area of (f). (d) Zoomed-in view of the right white box area of (f). Blood and melanin absorption maps are coded according to the color bar shown in the right.
Fig. 5.
Fig. 5. Extraction of blood and melanin information content from hyperspectral reconstruction with the RGB images captured by a smartphone camera under the fluorescent lamp illumination. (a) Initial RGB image of upper facial skin captured by the smartphone. (b) blood absorption map and (c) melanin absorption map of the facial skin, with pimples and moles. Figure 5(d)–5(f) Zoomed-in views of the target areas in red box of Fig. 5(a)–5(c), respectively. (g) Initial RGB image of lower facial skin captured by the smartphone, (h) blood absorption map and (i) melanin absorption map of the facial skin, with pimples and moles. Figure 5(j)–5(l) Zoomed-in views of the target areas in red box of Fig. 5(g)–5(i), respectively. Red arrow: skin redness or pimples; Black arrow: moles. Blood and melanin absorption maps are coded according to the color bar shown in the right.
Fig. 6.
Fig. 6. Heart Rate measurement with the smartphone-based hyperspectral imaging system. (a) One frame extracted from the RGB mode video in facial skin monitoring with the smartphone camera under flashlight illumination. (b) The derived map of blood absorption information (coded according to the color bar shown in the right) overlaid with the raw grey-scale RGB image in (a). (c) Black curve: The frequency spectrum of temporal profile of blood absorption information content. Red curve: The heart rate reference from the PowerLab pulse sensor.
Fig. 7.
Fig. 7. Vascular occlusion monitoring with the smartphone-based hyperspectral imaging system. (a) Representative RGB frame at 60s from the monitoring video during vascular occlusion on the middle finger. (b) Blood absorption map at 60s extracted from hyperspectral reconstruction based on the RGB frame in (a) (color-coded according to color bar shown in the right). (c) Oxygen saturation map at 60s extracted from hyperspectral reconstruction based on the RGB frame in (a) (color-coded according to color bar shown in the right). (d) Real-time response curves of blood absorption intensities on middle finger during vascular occlusion. The intensities were normalized summations of blood absorption intensities in corresponding color box areas in (a): Experiment group: black curve: box 1, mid-finger. Control group: red curve: box 2, forefinger; green curve: box 3, index finger; blue curve: box 4, little finger; teal curve: box 5, thumb. (e) Real-time response curves of oxygen saturation intensities on finger skins during vascular occlusion. The intensities were normalized summations of oxygen saturation intensities in corresponding color box areas in (a). Experiment group: black curve: box 1, mid-finger. Control group: red curve: box 2, forefinger; green curve: box 3, index finger; blue curve: box 4, little finger; teal curve: box 5, thumb). (f) Visualization of RGB frames, blood absorption maps and oxygen saturation maps at 10s, 50s, 70s and 110s from the monitoring video to vascular occlusion on middle finger. Blood absorption maps were color-coded according to color bar shown in (b). Oxygen saturation maps were color-coded according to color bar shown in (c).

Tables (2)

Tables Icon

Table 1. The spectral characterization of snapshot hyperspectral camera

Tables Icon

Table 2. Relative errors between initial and reconstructed hyperspectral reflectance of 100 color blocks

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

VC=l(λ)γ(λ)fC(λ)s(λ)dλ=mC(λ)γ(λ)dλ
V=Mγ
VC=l(λ)γ(λ)fC(λ)s(λ)dλ=mC(λ)γ(λ)dλ
V=Mγ
V~=WV
e=(VV~)t(VV~)=VtVWVtVWtVtV+WtWVtV
eW=VtV+WtVtV=0
W=VVtVVt1
Cr=C1KC2=mx1l1+ny1l1K(mx2l2+ny2l2)=m(x1l1Kx2l2)+n(y1l1Ky2l2)
Ci=moxyxioxy+mdeoxideo+α
SaO2=moxy/(moxy+mdeo)

Metrics