Abstract

Line-field confocal optical coherence tomography (LC-OCT) is a recently introduced technique for ultrahigh-resolution vertical section (B-scan) imaging of human skin in vivo. This work presents a new implementation of the LC-OCT technique to obtain horizontal section images (C-scans) in addition to B-scans. C-scan imaging is achieved with this dual-mode LC-OCT system using a mirror galvanometer for lateral scanning along with a piezoelectric chip for modulation of the interferometric signal. A quasi-identical spatial resolution of ∼ 1 µm is measured for both B-scans and C-scans. The images are acquired in both modes at a rate of 10 frames per second. The horizontal field of view of the C-scans is 1.2 × 0.5 mm2, identical to the vertical field of view of the B-scans. The user can switch between the two modes by clicking a button. In vivo cellular-resolution imaging of human skin is demonstrated in both B-scan and C-scan modes, with the possibility to navigate within the skin tissues in real time.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Line-field confocal time-domain optical coherence tomography with dynamic focusing

Arnaud Dubois, Olivier Levecq, Hicham Azimani, Arthur Davis, Jonas Ogien, David Siret, and Anaïs Barut
Opt. Express 26(26) 33534-33542 (2018)

Mirau-based line-field confocal optical coherence tomography

Arnaud Dubois, Weikai Xue, O. Levecq, P. Bulkin, Anne-Lise Coutrot, and Jonas Ogien
Opt. Express 28(6) 7918-7927 (2020)

Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging

Arthur Davis, Olivier Levecq, Hicham Azimani, David Siret, and Arnaud Dubois
Biomed. Opt. Express 10(2) 694-706 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
    [Crossref]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  3. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998).
    [Crossref]
  4. A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
    [Crossref]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221 (1999).
    [Crossref]
  6. G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. S. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
    [Crossref]
  7. Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
    [Crossref]
  8. A. F. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24(8), 519 (1999).
    [Crossref]
  9. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131 (2005).
    [Crossref]
  10. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103 (2007).
    [Crossref]
  11. S. Lawman, Y. Dong, B. M. Williams, V. Romano, S. Kaye, S. P. Harding, C. Willoughby, Y.-C. Shen, and Y. Zheng, “High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography,” Opt. Express 24(11), 12395 (2016).
    [Crossref]
  12. M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds. (SPIE, 2009).
  13. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716 (2015).
    [Crossref]
  14. D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
    [Crossref]
  15. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [Crossref]
  16. A. D. Aguirre, C. Zhou, H.-C. Lee, O. O. Ahsen, and J. G. Fujimoto, “Optical Coherence Microscopy,” in Optical Coherence Tomography - Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), p. 865.
  17. Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971 (2007).
    [Crossref]
  18. J. P. Rolland, K. S. Lee, P. Meemon, and S. F. Ibrahim, “Gabor domain optical coherence microscopy of human skin,” in Advances in Dermatological Sciences, R. Chilcott and K. R. Brain, eds. (Royal Society of Chemistry, 2013), pp. 37–52.
  19. C.-C. Tsai, C.-K. Chang, K.-Y. Hsu, T.-S. Ho, M.-Y. Lin, J.-W. Tjiu, and S.-L. Huang, “Full-depth epidermis tomography using a mirau-based full-field optical coherence tomography,” Biomed. Opt. Express 5(9), 3001 (2014).
    [Crossref]
  20. J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
    [Crossref]
  21. P. Stremplewski, E. Auksorius, P. Wnuk, Ł. Kozoń, P. Garstecki, and M. Wojtkowski, “In vivo volumetric imaging by crosstalk-free full-field OCT,” Optica 6(5), 608–617 (2019).
    [Crossref]
  22. N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
    [Crossref]
  23. N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
    [Crossref]
  24. C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
    [Crossref]
  25. J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).
  26. A. Dubois, “A simplified algorithm for digital fringe analysis in two-wave interferometry with sinusoidal phase modulation,” Opt. Commun. 391, 128–134 (2017).
    [Crossref]
  27. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3d imaging at 20 million a-scans and 45 GVoxels per second,” Opt. Express 18(14), 14685 (2010).
    [Crossref]
  28. D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
    [Crossref]
  29. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021 (2013).
    [Crossref]
  30. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34(12), 1750 (2009).
    [Crossref]
  31. L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko, L. M. Wurster, and R. A. Leitgeb, “Holographic line field en-face OCT with digital adaptive optics in the retina in vivo,” Biomed. Opt. Express 9(2), 472 (2018).
    [Crossref]
  32. V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9(2), 557 (2018).
    [Crossref]
  33. M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp. Dermatol. 21(10), 740–744 (2012).
    [Crossref]
  34. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480 (2010).
    [Crossref]
  35. M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

2019 (2)

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

P. Stremplewski, E. Auksorius, P. Wnuk, Ł. Kozoń, P. Garstecki, and M. Wojtkowski, “In vivo volumetric imaging by crosstalk-free full-field OCT,” Optica 6(5), 608–617 (2019).
[Crossref]

2018 (5)

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko, L. M. Wurster, and R. A. Leitgeb, “Holographic line field en-face OCT with digital adaptive optics in the retina in vivo,” Biomed. Opt. Express 9(2), 472 (2018).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9(2), 557 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

2017 (2)

A. Dubois, “A simplified algorithm for digital fringe analysis in two-wave interferometry with sinusoidal phase modulation,” Opt. Commun. 391, 128–134 (2017).
[Crossref]

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

2016 (2)

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

S. Lawman, Y. Dong, B. M. Williams, V. Romano, S. Kaye, S. P. Harding, C. Willoughby, Y.-C. Shen, and Y. Zheng, “High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography,” Opt. Express 24(11), 12395 (2016).
[Crossref]

2015 (2)

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (2)

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp. Dermatol. 21(10), 740–744 (2012).
[Crossref]

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

2010 (3)

D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480 (2010).
[Crossref]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3d imaging at 20 million a-scans and 45 GVoxels per second,” Opt. Express 18(14), 14685 (2010).
[Crossref]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

2009 (1)

2007 (2)

2006 (1)

2005 (1)

1999 (2)

1998 (1)

1994 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Aguirre, A. D.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971 (2007).
[Crossref]

A. D. Aguirre, C. Zhou, H.-C. Lee, O. O. Ahsen, and J. G. Fujimoto, “Optical Coherence Microscopy,” in Optical Coherence Tomography - Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), p. 865.

Ahsen, O. O.

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021 (2013).
[Crossref]

A. D. Aguirre, C. Zhou, H.-C. Lee, O. O. Ahsen, and J. G. Fujimoto, “Optical Coherence Microscopy,” in Optical Coherence Tomography - Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), p. 865.

Alessi-Fox, C.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

Auksorius, E.

Azimani, H.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Barut, A.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Baumann, B.

Biedermann, B. R.

Birks, T. A.

Blatter, C.

Boccara, A. C.

Boone, M.

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp. Dermatol. 21(10), 740–744 (2012).
[Crossref]

Boppart, S. A.

Bourdes, V.

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Breuer, E. I.

Brzezinski, M.

Cable, A.

Cazalas, M.

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Chang, C.-K.

Chang, E. W.

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, C.-S. J.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

Chen, Y.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971 (2007).
[Crossref]

Chenet, A.

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Cinotti, E.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Cohen, D. W.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Connolly, J. L.

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021 (2013).
[Crossref]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Cordova, M. A.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

Dalimier, E.

David, A.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Davis, A.

del Marmol, V.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Dong, Y.

Drexler, W.

Dubois, A.

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

A. Dubois, “A simplified algorithm for digital fringe analysis in two-wave interferometry with sinusoidal phase modulation,” Opt. Commun. 391, 128–134 (2017).
[Crossref]

D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480 (2010).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Eigenwillig, C. M.

Fechtig, D. J.

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716 (2015).
[Crossref]

Fercher, A. F.

Ferguson, R. D.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds. (SPIE, 2009).

Fink, M.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fox, W.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

Fujimoto, J. G.

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021 (2013).
[Crossref]

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971 (2007).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221 (1999).
[Crossref]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

A. D. Aguirre, C. Zhou, H.-C. Lee, O. O. Ahsen, and J. G. Fujimoto, “Optical Coherence Microscopy,” in Optical Coherence Tomography - Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), p. 865.

Garstecki, P.

Georges, P.

Ginner, L.

Götzinger, E.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Grieve, K.

Grulkowski, I.

Hammer, D. X.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds. (SPIE, 2009).

Harding, S. P.

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hitzenberger, C. K.

Ho, T.-S.

Hornegger, J.

Hsu, K.-Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huang, S.-L.

Huang, S.-W.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971 (2007).
[Crossref]

Huber, R.

Humbert, G.

Ibrahim, S. F.

J. P. Rolland, K. S. Lee, P. Meemon, and S. F. Ibrahim, “Gabor domain optical coherence microscopy of human skin,” in Advances in Dermatological Sciences, R. Chilcott and K. R. Brain, eds. (Royal Society of Chemistry, 2013), pp. 37–52.

Iftimia, N.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

Iftimia, N. V.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds. (SPIE, 2009).

Ippen, E. P.

Irsch, K.

Itoh, M.

Izatt, J. A.

Jayaraman, V.

Jemec, G. B. E.

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp. Dermatol. 21(10), 740–744 (2012).
[Crossref]

Jiang, J.

Kärtner, F. X.

Kaye, S.

Klein, T.

Knight, J. C.

Kopf, D.

Kozon, L.

Kraus, M. F.

Kulkarni, M. D.

Kumar, A.

L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko, L. M. Wurster, and R. A. Leitgeb, “Holographic line field en-face OCT with digital adaptive optics in the retina in vivo,” Biomed. Opt. Express 9(2), 472 (2018).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

Lawman, S.

Lederer, M. J.

Lee, H.-C.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

A. D. Aguirre, C. Zhou, H.-C. Lee, O. O. Ahsen, and J. G. Fujimoto, “Optical Coherence Microscopy,” in Optical Coherence Tomography - Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), p. 865.

Lee, K. S.

J. P. Rolland, K. S. Lee, P. Meemon, and S. F. Ibrahim, “Gabor domain optical coherence microscopy of human skin,” in Advances in Dermatological Sciences, R. Chilcott and K. R. Brain, eds. (Royal Society of Chemistry, 2013), pp. 37–52.

Leitgeb, R. A.

Leon-Saval, S. G.

Levecq, O.

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Lin, M.-Y.

Maguluri, G.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

Makita, S.

Malvehy, J.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Marmol, V. D.

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp. Dermatol. 21(10), 740–744 (2012).
[Crossref]

Mazlin, V.

Meemon, P.

J. P. Rolland, K. S. Lee, P. Meemon, and S. F. Ibrahim, “Gabor domain optical coherence microscopy of human skin,” in Advances in Dermatological Sciences, R. Chilcott and K. R. Brain, eds. (Royal Society of Chemistry, 2013), pp. 37–52.

Mondelblatt, A. E.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Moreau, J.

Morgner, U.

Mujat, M.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds. (SPIE, 2009).

Nakamura, Y.

Ogien, J.

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Owen, G. M.

Park, J.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

Pascual, T.

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Perrot, J. L.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Perrot, J.-L.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

Peterson, G.

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

Petit, L.

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Piketty, C.

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Pircher, M.

Pitris, C.

Potsaid, B.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

Potsaid, B. M.

Pricoupenko, N.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Rajadhyaksha, M.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

Richards-Kortum, R.

Rolland, J. P.

J. P. Rolland, K. S. Lee, P. Meemon, and S. F. Ibrahim, “Gabor domain optical coherence microscopy of human skin,” in Advances in Dermatological Sciences, R. Chilcott and K. R. Brain, eds. (Royal Society of Chemistry, 2013), pp. 37–52.

Rollins, A. M.

Romano, V.

Rubegni, P.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Russell, P. S. J.

Sacchet, D.

Sahel, J.-A.

Sahu, A.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

Salas, M.

Sattmann, H.

Schmoll, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sheikine, Y.

Shen, Y.-C.

Siret, D.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Stifter, D.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Stremplewski, P.

Suppa, M.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Tao, Y. K.

Tjiu, J.-W.

Tsai, C.-C.

Tsai, T.-H.

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021 (2013).
[Crossref]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Ung-arunyawee, R.

Vaglio, J.

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Wadsworth, W. J.

Wang, Y.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Werkmeister, R. M.

Wiesauer, K.

Wieser, W.

Williams, B. M.

Willoughby, C.

Wnuk, P.

Wojtkowski, M.

Wurster, L. M.

Xiao, P.

Xue, W.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yélamos, O.

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

Zheng, Y.

Zhou, C.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

A. D. Aguirre, C. Zhou, H.-C. Lee, O. O. Ahsen, and J. G. Fujimoto, “Optical Coherence Microscopy,” in Optical Coherence Tomography - Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), p. 865.

Zugaj, D.

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Zuluaga, A. F.

Appl. Opt. (1)

Biomed. Opt. Express (4)

Cancer Res. (1)

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref]

Exp. Dermatol. (1)

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp. Dermatol. 21(10), 740–744 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

J. Biomed. Opt. (3)

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, and J.-L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

N. Iftimia, G. Peterson, E. W. Chang, G. Maguluri, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: anex vivostudy,” J. Biomed. Opt. 21(1), 016006 (2016).
[Crossref]

N. Iftimia, O. Yélamos, C.-S. J. Chen, G. Maguluri, M. A. Cordova, A. Sahu, J. Park, W. Fox, C. Alessi-Fox, and M. Rajadhyaksha, “Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins,” J. Biomed. Opt. 22(7), 076006 (2017).
[Crossref]

J. Biophotonics (1)

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

J. Mod. Opt. (1)

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

Opt. Commun. (1)

A. Dubois, “A simplified algorithm for digital fringe analysis in two-wave interferometry with sinusoidal phase modulation,” Opt. Commun. 391, 128–134 (2017).
[Crossref]

Opt. Express (8)

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

S. Lawman, Y. Dong, B. M. Williams, V. Romano, S. Kaye, S. P. Harding, C. Willoughby, Y.-C. Shen, and Y. Zheng, “High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography,” Opt. Express 24(11), 12395 (2016).
[Crossref]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3d imaging at 20 million a-scans and 45 GVoxels per second,” Opt. Express 18(14), 14685 (2010).
[Crossref]

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021 (2013).
[Crossref]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998).
[Crossref]

B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131 (2005).
[Crossref]

G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. S. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
[Crossref]

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103 (2007).
[Crossref]

Opt. Lett. (5)

Optica (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Skin Res. Technol. (1)

D. Zugaj, A. Chenet, L. Petit, J. Vaglio, T. Pascual, C. Piketty, and V. Bourdes, “A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography,” Skin Res. Technol. 24(3), 396–406 (2018).
[Crossref]

Other (5)

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds. (SPIE, 2009).

A. D. Aguirre, C. Zhou, H.-C. Lee, O. O. Ahsen, and J. G. Fujimoto, “Optical Coherence Microscopy,” in Optical Coherence Tomography - Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), p. 865.

J. P. Rolland, K. S. Lee, P. Meemon, and S. F. Ibrahim, “Gabor domain optical coherence microscopy of human skin,” in Advances in Dermatological Sciences, R. Chilcott and K. R. Brain, eds. (Royal Society of Chemistry, 2013), pp. 37–52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the dual-mode LC-OCT system. SMF: single mode fiber; CL: cylindrical lens; BS: beamsplitter; MG: mirror galvanometer; MO: microscope objective; IM: immersion medium; RS: reference surface; C: piezoelectric chip; PZT: piezoelectric stage; GP: glass plate; TL: tube lens. The plain red lines represent the beam in the plane of the figure (the cylindrical lens has no effect in this plane). The dotted red lines represent the beam in the direction orthogonal to the plane of the figure. The dashed rectangle represents the part of the interferometer moved vertically under the action of PZT for B-scan imaging.
Fig. 2.
Fig. 2. Lateral resolution characterization for the dual-mode LC-OCT system by C-scan imaging of a high-resolution microscopy resolution target. Line pairs up to 550 lp/mm can be resolved.
Fig. 3.
Fig. 3. LC-OCT C-scan images of healthy human skin in vivo (back of the hand), obtained for several layers of the skin: a) stratum corneum, b) stratum spinosum, c) stratum basale and d) papillary dermis. The depth (Z) of each layers is indicated, counted from the surface of the skin. The C-scans are correlated to a B-scan obtained by switching from C-scan mode to B-scan mode. Scale bars: 100 µm.
Fig. 4.
Fig. 4. LC-OCT B-scan images of healthy human skin in vivo (back of the hand), obtained for several lateral positions, correlated to a C-scan. The lateral positions (Y) are counted from the center line of the C-scan. Scale bars: 100 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = ( E 1 E 2 ) 2 + ( E 3 E 4 ) 2 .
P = N p T ,

Metrics