Abstract

Cognitive decline (CD) is a major symptom of mild cognitive impairment (MCI). Patients with MCI have an increased likelihood of developing Alzheimer’s disease (AD). Although a cure for AD is currently lacking, medication therapies and/or daily training in the early stage can alleviate disease progression and improve patients’ quality of life. Accordingly, investigating CD-related biomarkers via brain imaging devices is crucial for early diagnosis. In particular, “portable” brain imaging devices enable frequent diagnostic checks as a routine clinical tool, and therefore increase the possibility of early AD diagnosis. This study aimed to comprehensively investigate functional connectivity (FC) in the prefrontal cortex measured by a portable functional near-infrared spectroscopy (fNIRS) device during a working memory (WM) task known as the delayed matching to sample (DMTS) task. Differences in prefrontal FC between healthy control (HC) (n = 23) and CD groups (n = 23) were examined. Intra-group analysis (one-sample t-test) revealed significantly greater prefrontal FC, especially left- and inter-hemispheric FC, in the CD group than in the HC. These observations could be due to a compensatory mechanism of the prefrontal cortex caused by hippocampal degeneration. Inter-group analysis (unpaired two-sample t-test) revealed significant intergroup differences in left- and inter-hemispheric FC. These attributes may serve as a novel biomarker for early detection of MCI. In addition, our findings imply that portable fNIRS devices covering the prefrontal cortex may be useful for early diagnosis of MCI.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

Huilin Zhu, Jun Li, Yuebo Fan, Xinge Li, Dan Huang, and Sailing He
Biomed. Opt. Express 6(3) 690-701 (2015)

Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer’s disease: a multi-scale entropy analysis

Xuanyu Li, Zhaojun Zhu, Weina Zhao, Yu Sun, Dong Wen, Yunyan Xie, Xiangyu Liu, Haijing Niu, and Ying Han
Biomed. Opt. Express 9(4) 1916-1929 (2018)

Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies

Huilin Zhu, Yuebo Fan, Huan Guo, Dan Huang, and Sailing He
Biomed. Opt. Express 5(4) 1262-1274 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Kumar, A. Singh, and E. Ekavali, “A review on Alzheimer’s disease pathophysiology and its management: an update,” Pharmacol. Rep. 67(2), 195–203 (2015).
    [Crossref]
  2. A. Alzheimer’s, “2015 Alzheimer’s disease facts and figures,” Alzheimers Dement. 11(3), 332–384 (2015).
    [Crossref]
  3. N. J. Gates and P. Sachdev, “Is cognitive training an effective treatment for preclinical and early Alzheimer’s disease?” J. Alzheimer’s Dis. 42(s4), S551–S559 (2014).
    [Crossref]
  4. J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
    [Crossref]
  5. R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
    [Crossref]
  6. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
    [Crossref]
  7. J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
    [Crossref]
  8. R. C. Petersen, “Early diagnosis of Alzheimer’s disease: is MCI too late?” Curr. Alzheimer Res. 6(4), 324–330 (2009).
    [Crossref]
  9. R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” J. Intern. Med. 256(3), 183–194 (2004).
    [Crossref]
  10. R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
    [Crossref]
  11. G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
    [Crossref]
  12. A. E. Budson and B. H. Price, “Memory dysfunction,” N. Engl. J. Med. 352(7), 692–699 (2005).
    [Crossref]
  13. C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
    [Crossref]
  14. R. Cabeza and L. Nyberg, “Neural bases of learning and memory: functional neuroimaging evidence,” Curr. Opin. Neurol. 13(4), 415–421 (2000).
    [Crossref]
  15. T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
    [Crossref]
  16. J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
    [Crossref]
  17. K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
    [Crossref]
  18. K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993).
    [Crossref]
  19. R. Li, T. Nguyen, T. Potter, and Y. Zhang, “Dynamic cortical connectivity alterations associated with alzheimer’s disease: An EEG and FNIRS integration study,” NeuroImage: Clin. 21, 101622 (2019).
    [Crossref]
  20. K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
    [Crossref]
  21. C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
    [Crossref]
  22. T. B. Tang and Y. L. Chan, “Functional connectivity analysis on mild Alzheimer’s disease, mild cognitive impairment and normal aging using FNIRS,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE, 2018), pp. 17–20.
  23. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (FNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
    [Crossref]
  24. P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. 83(4), 1140–1144 (1986).
    [Crossref]
  25. A.-C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in psychiatry,” NeuroImage 85, 478–488 (2014).
    [Crossref]
  26. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
    [Crossref]
  27. F. S. Racz, P. Mukli, Z. Nagy, and A. Eke, “Increased prefrontal cortex connectivity during cognitive challenge assessed by FNRIS imaging,” Biomed. Opt. Express 8(8), 3842–3855 (2017).
    [Crossref]
  28. T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
    [Crossref]
  29. R. Sperling, “Functional mri studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease,” Ann. N. Y. Acad. Sci. 1097(1), 146–155 (2007).
    [Crossref]
  30. F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
    [Crossref]
  31. D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
    [Crossref]
  32. F. Clément, S. Gauthier, and S. Belleville, “Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity,” Cortex 49(5), 1268–1279 (2013).
    [Crossref]
  33. S. N. U. B. Hospital, “Standardization of dementia screening tests,” Tech. Rep. 11-1351000-000589, Seoul National University Bundang Hospital (2009).
  34. T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
    [Crossref]
  35. S. Brigadoi and R. J. Cooper, “How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
    [Crossref]
  36. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [Crossref]
  37. T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
    [Crossref]
  38. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
    [Crossref]
  39. M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” NeuroImage 8(1), 69–78 (1998).
    [Crossref]
  40. P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
    [Crossref]
  41. L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
    [Crossref]
  42. C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
    [Crossref]
  43. F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
    [Crossref]
  44. R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
    [Crossref]
  45. C. Ranganath, M. K. Johnson, and M. D’Esposito, “Prefrontal activity associated with working memory and episodic long-term memory,” Neuropsychologia 41(3), 378–389 (2003).
    [Crossref]
  46. C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
    [Crossref]
  47. M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
    [Crossref]
  48. E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
    [Crossref]
  49. R. H. Bauer and J. M. Fuster, “Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys,” J. Comp. Physiol. Psychol. 90(3), 293–302 (1976).
    [Crossref]
  50. S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, “Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas",” J. Neurosci. 13(4), 1479–1497 (1993).
    [Crossref]
  51. T. Sawaguchi and I. Yamane, “Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task,” J. Neurophysiol. 82(5), 2070–2080 (1999).
    [Crossref]
  52. S. A. Bunge, T. Klingberg, R. B. Jacobsen, and J. D. Gabrieli, “A resource model of the neural basis of executive working memory,” Proc. Natl. Acad. Sci. 97(7), 3573–3578 (2000).
    [Crossref]
  53. A. J. Szameitat, T. Schubert, K. Müller, and D. Y. Von Cramon, “Localization of executive functions in dual-task performance with FMRI,” J. Cogn. Neurosci. 14(8), 1184–1199 (2002).
    [Crossref]
  54. T. Schubert and A. J. Szameitat, “Functional neuroanatomy of interference in overlapping dual tasks: an FMRI study,” Cognit. Brain Res. 17(3), 733–746 (2003).
    [Crossref]
  55. R. Loose, C. Kaufmann, D. P. Auer, and K. W. Lange, “Human prefrontal and sensory cortical activity during divided attention tasks,” Hum. Brain Mapp. 18(4), 249–259 (2003).
    [Crossref]
  56. J. A. Johnson and R. J. Zatorre, “Neural substrates for dividing and focusing attention between simultaneous auditory and visual events,” NeuroImage 31(4), 1673–1681 (2006).
    [Crossref]
  57. V. Santangelo and E. Macaluso, “The contribution of working memory to divided attention,” Hum. Brain Mapp. 34(1), 158–175 (2013).
    [Crossref]
  58. H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron 44(1), 109–120 (2004).
    [Crossref]
  59. L. Farràs-Permanyer, J. Guàrdia-Olmos, and M. Peró-Cebollero, “Mild cognitive impairment and FMRI studies of brain functional connectivity: the state of the art,” Front. Psychol. 6, 1095 (2015).
    [Crossref]
  60. Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
    [Crossref]
  61. P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
    [Crossref]
  62. P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
    [Crossref]

2019 (4)

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

R. Li, T. Nguyen, T. Potter, and Y. Zhang, “Dynamic cortical connectivity alterations associated with alzheimer’s disease: An EEG and FNIRS integration study,” NeuroImage: Clin. 21, 101622 (2019).
[Crossref]

P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
[Crossref]

2018 (2)

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

2017 (1)

2016 (2)

C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
[Crossref]

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

2015 (4)

A. Kumar, A. Singh, and E. Ekavali, “A review on Alzheimer’s disease pathophysiology and its management: an update,” Pharmacol. Rep. 67(2), 195–203 (2015).
[Crossref]

A. Alzheimer’s, “2015 Alzheimer’s disease facts and figures,” Alzheimers Dement. 11(3), 332–384 (2015).
[Crossref]

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref]

L. Farràs-Permanyer, J. Guàrdia-Olmos, and M. Peró-Cebollero, “Mild cognitive impairment and FMRI studies of brain functional connectivity: the state of the art,” Front. Psychol. 6, 1095 (2015).
[Crossref]

2014 (4)

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

A.-C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in psychiatry,” NeuroImage 85, 478–488 (2014).
[Crossref]

N. J. Gates and P. Sachdev, “Is cognitive training an effective treatment for preclinical and early Alzheimer’s disease?” J. Alzheimer’s Dis. 42(s4), S551–S559 (2014).
[Crossref]

2013 (2)

F. Clément, S. Gauthier, and S. Belleville, “Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity,” Cortex 49(5), 1268–1279 (2013).
[Crossref]

V. Santangelo and E. Macaluso, “The contribution of working memory to divided attention,” Hum. Brain Mapp. 34(1), 158–175 (2013).
[Crossref]

2012 (2)

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (FNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

2011 (1)

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

2010 (4)

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref]

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

2009 (2)

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

R. C. Petersen, “Early diagnosis of Alzheimer’s disease: is MCI too late?” Curr. Alzheimer Res. 6(4), 324–330 (2009).
[Crossref]

2007 (4)

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

R. Sperling, “Functional mri studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease,” Ann. N. Y. Acad. Sci. 1097(1), 146–155 (2007).
[Crossref]

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

2006 (2)

F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
[Crossref]

J. A. Johnson and R. J. Zatorre, “Neural substrates for dividing and focusing attention between simultaneous auditory and visual events,” NeuroImage 31(4), 1673–1681 (2006).
[Crossref]

2005 (2)

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

A. E. Budson and B. H. Price, “Memory dysfunction,” N. Engl. J. Med. 352(7), 692–699 (2005).
[Crossref]

2004 (2)

R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” J. Intern. Med. 256(3), 183–194 (2004).
[Crossref]

H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron 44(1), 109–120 (2004).
[Crossref]

2003 (3)

C. Ranganath, M. K. Johnson, and M. D’Esposito, “Prefrontal activity associated with working memory and episodic long-term memory,” Neuropsychologia 41(3), 378–389 (2003).
[Crossref]

T. Schubert and A. J. Szameitat, “Functional neuroanatomy of interference in overlapping dual tasks: an FMRI study,” Cognit. Brain Res. 17(3), 733–746 (2003).
[Crossref]

R. Loose, C. Kaufmann, D. P. Auer, and K. W. Lange, “Human prefrontal and sensory cortical activity during divided attention tasks,” Hum. Brain Mapp. 18(4), 249–259 (2003).
[Crossref]

2002 (1)

A. J. Szameitat, T. Schubert, K. Müller, and D. Y. Von Cramon, “Localization of executive functions in dual-task performance with FMRI,” J. Cogn. Neurosci. 14(8), 1184–1199 (2002).
[Crossref]

2001 (4)

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
[Crossref]

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

2000 (2)

R. Cabeza and L. Nyberg, “Neural bases of learning and memory: functional neuroimaging evidence,” Curr. Opin. Neurol. 13(4), 415–421 (2000).
[Crossref]

S. A. Bunge, T. Klingberg, R. B. Jacobsen, and J. D. Gabrieli, “A resource model of the neural basis of executive working memory,” Proc. Natl. Acad. Sci. 97(7), 3573–3578 (2000).
[Crossref]

1999 (2)

T. Sawaguchi and I. Yamane, “Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task,” J. Neurophysiol. 82(5), 2070–2080 (1999).
[Crossref]

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

1998 (2)

G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
[Crossref]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” NeuroImage 8(1), 69–78 (1998).
[Crossref]

1997 (1)

1996 (2)

K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
[Crossref]

M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
[Crossref]

1993 (2)

S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, “Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas",” J. Neurosci. 13(4), 1479–1497 (1993).
[Crossref]

K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993).
[Crossref]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

1986 (1)

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. 83(4), 1140–1144 (1986).
[Crossref]

1976 (1)

R. H. Bauer and J. M. Fuster, “Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys,” J. Comp. Physiol. Psychol. 90(3), 293–302 (1976).
[Crossref]

Abad, S.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Absinta, M.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Agosta, F.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Alzheimer’s, A.

A. Alzheimer’s, “2015 Alzheimer’s disease facts and figures,” Alzheimers Dement. 11(3), 332–384 (2015).
[Crossref]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Arridge, S. R.

Atsumori, H.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

Auer, D. P.

R. Loose, C. Kaufmann, D. P. Auer, and K. W. Lange, “Human prefrontal and sensory cortical activity during divided attention tasks,” Hum. Brain Mapp. 18(4), 249–259 (2003).
[Crossref]

Auladell, C.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Babawale, O.

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

Babiloni, C.

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Baek, J. Y.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Bauer, R. H.

R. H. Bauer and J. M. Fuster, “Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys,” J. Comp. Physiol. Psychol. 90(3), 293–302 (1976).
[Crossref]

Beas-Zarate, C.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Belleville, S.

F. Clément, S. Gauthier, and S. Belleville, “Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity,” Cortex 49(5), 1268–1279 (2013).
[Crossref]

Berg, L.

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Biswal, B. B.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

Boas, D. A.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref]

Bozzali, M.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Brigadoi, S.

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref]

Bruce, C. J.

S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, “Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas",” J. Neurosci. 13(4), 1479–1497 (1993).
[Crossref]

Budson, A. E.

A. E. Budson and B. H. Price, “Memory dysfunction,” N. Engl. J. Med. 352(7), 692–699 (2005).
[Crossref]

Bunge, S. A.

S. A. Bunge, T. Klingberg, R. B. Jacobsen, and J. D. Gabrieli, “A resource model of the neural basis of executive working memory,” Proc. Natl. Acad. Sci. 97(7), 3573–3578 (2000).
[Crossref]

Burgess, P.

P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
[Crossref]

Cabeza, R.

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

R. Cabeza and L. Nyberg, “Neural bases of learning and memory: functional neuroimaging evidence,” Curr. Opin. Neurol. 13(4), 415–421 (2000).
[Crossref]

Caltagirone, C.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Camins, A.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Carducci, F.

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Chan, Y. L.

T. B. Tang and Y. L. Chan, “Functional connectivity analysis on mild Alzheimer’s disease, mild cognitive impairment and normal aging using FNIRS,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE, 2018), pp. 17–20.

Chen, W.

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

Chiarotti, F.

G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
[Crossref]

Choi, J.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Choi, K. Y.

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

Clément, F.

F. Clément, S. Gauthier, and S. Belleville, “Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity,” Cortex 49(5), 1268–1279 (2013).
[Crossref]

Comi, G.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Cooper, R. J.

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

Cope, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Cullum, C. M.

F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
[Crossref]

D’Esposito, M.

C. Ranganath, M. K. Johnson, and M. D’Esposito, “Prefrontal activity associated with working memory and episodic long-term memory,” Neuropsychologia 41(3), 378–389 (2003).
[Crossref]

Del Gratta, C.

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Delpy, D. T.

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” NeuroImage 8(1), 69–78 (1998).
[Crossref]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Deshpande, G.

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

Dolan, R. J.

M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
[Crossref]

Dong, H.

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

Doody, R.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Dresler, T.

A.-C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in psychiatry,” NeuroImage 85, 478–488 (2014).
[Crossref]

Düzel, E.

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

Ehlis, A.-C.

A.-C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in psychiatry,” NeuroImage 85, 478–488 (2014).
[Crossref]

Eichenbaum, H.

H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron 44(1), 109–120 (2004).
[Crossref]

Ekavali, E.

A. Kumar, A. Singh, and E. Ekavali, “A review on Alzheimer’s disease pathophysiology and its management: an update,” Pharmacol. Rep. 67(2), 195–203 (2015).
[Crossref]

Eke, A.

Erb, M.

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

Ettcheto, M.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Falautano, M.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Fallgatter, A. J.

A.-C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in psychiatry,” NeuroImage 85, 478–488 (2014).
[Crossref]

Farràs-Permanyer, L.

L. Farràs-Permanyer, J. Guàrdia-Olmos, and M. Peró-Cebollero, “Mild cognitive impairment and FMRI studies of brain functional connectivity: the state of the art,” Front. Psychol. 6, 1095 (2015).
[Crossref]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (FNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

Ferretti, A.

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Ferris, S.

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

Filippi, M.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Firbank, M.

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” NeuroImage 8(1), 69–78 (1998).
[Crossref]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref]

Fletcher, P.

M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
[Crossref]

K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
[Crossref]

Folch, J.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Fox, P. T.

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. 83(4), 1140–1144 (1986).
[Crossref]

Frackowiak, R.

M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
[Crossref]

K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993).
[Crossref]

Frackowiak, R. S.

K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
[Crossref]

Franceschini, M. A.

Freymann, K.

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

Friston, K.

K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993).
[Crossref]

Friston, K. J.

K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
[Crossref]

Frith, C.

M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
[Crossref]

K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993).
[Crossref]

Frith, C. D.

K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
[Crossref]

Funahashi, S.

S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, “Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas",” J. Neurosci. 13(4), 1479–1497 (1993).
[Crossref]

Funane, T.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

Furey, M. L.

C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
[Crossref]

Fuster, J. M.

R. H. Bauer and J. M. Fuster, “Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys,” J. Comp. Physiol. Psychol. 90(3), 293–302 (1976).
[Crossref]

Gabrieli, J. D.

S. A. Bunge, T. Klingberg, R. B. Jacobsen, and J. D. Gabrieli, “A resource model of the neural basis of executive working memory,” Proc. Natl. Acad. Sci. 97(7), 3573–3578 (2000).
[Crossref]

Gagnon, L.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

Gainotti, G.

G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
[Crossref]

García, M. L.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Gates, N. J.

N. J. Gates and P. Sachdev, “Is cognitive training an effective treatment for preclinical and early Alzheimer’s disease?” J. Alzheimer’s Dis. 42(s4), S551–S559 (2014).
[Crossref]

Gauthier, S.

F. Clément, S. Gauthier, and S. Belleville, “Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity,” Cortex 49(5), 1268–1279 (2013).
[Crossref]

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

Goldman-Rakic, P. S.

S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, “Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas",” J. Neurosci. 13(4), 1479–1497 (1993).
[Crossref]

Gorno-Tempini, M. L.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Grady, C. L.

C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
[Crossref]

Greve, D. N.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

Grodd, W.

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

Guàrdia-Olmos, J.

L. Farràs-Permanyer, J. Guàrdia-Olmos, and M. Peró-Cebollero, “Mild cognitive impairment and FMRI studies of brain functional connectivity: the state of the art,” Front. Psychol. 6, 1095 (2015).
[Crossref]

Gwak, J.

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

Hamilton, A.

P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
[Crossref]

Heinze, H.-J.

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

Heun, R.

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

Horwitz, B.

C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
[Crossref]

Hu, X.

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

Ihl, R.

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

Initiative, A. D. N.

C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
[Crossref]

Ivnik, R. J.

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

Jacobsen, R. B.

S. A. Bunge, T. Klingberg, R. B. Jacobsen, and J. D. Gabrieli, “A resource model of the neural basis of executive working memory,” Proc. Natl. Acad. Sci. 97(7), 3573–3578 (2000).
[Crossref]

Jessen, F.

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

Jiang, T.

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

Jo, H. J.

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

Johnson, J. A.

J. A. Johnson and R. J. Zatorre, “Neural substrates for dividing and focusing attention between simultaneous auditory and visual events,” NeuroImage 31(4), 1673–1681 (2006).
[Crossref]

Johnson, M. K.

C. Ranganath, M. K. Johnson, and M. D’Esposito, “Prefrontal activity associated with working memory and episodic long-term memory,” Neuropsychologia 41(3), 378–389 (2003).
[Crossref]

Katura, T.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

Kaufmann, C.

R. Loose, C. Kaufmann, D. P. Auer, and K. W. Lange, “Human prefrontal and sensory cortical activity during divided attention tasks,” Hum. Brain Mapp. 18(4), 249–259 (2003).
[Crossref]

Kiguchi, M.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

Kim, E. J.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Kim, J. G.

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

Kim, M.

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

Kim, T.

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

Kircher, T. T.

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

Klingberg, T.

S. A. Bunge, T. Klingberg, R. B. Jacobsen, and J. D. Gabrieli, “A resource model of the neural basis of executive working memory,” Proc. Natl. Acad. Sci. 97(7), 3573–3578 (2000).
[Crossref]

Ko, M.-H.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Kokmen, E.

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

Kong, I. J.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Kumar, A.

A. Kumar, A. Singh, and E. Ekavali, “A review on Alzheimer’s disease pathophysiology and its management: an update,” Pharmacol. Rep. 67(2), 195–203 (2015).
[Crossref]

Kurz, A.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Lange, K. W.

R. Loose, C. Kaufmann, D. P. Auer, and K. W. Lange, “Human prefrontal and sensory cortical activity during divided attention tasks,” Hum. Brain Mapp. 18(4), 249–259 (2003).
[Crossref]

Lee, J. J.

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

Lee, K. H.

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

Lenzi, D.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Lenzi, G.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Leube, D. T.

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

Li, K.

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

Li, R.

R. Li, T. Nguyen, T. Potter, and Y. Zhang, “Dynamic cortical connectivity alterations associated with alzheimer’s disease: An EEG and FNIRS integration study,” NeuroImage: Clin. 21, 101622 (2019).
[Crossref]

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

Li, S.

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

Li, Z.

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

Liang, M.

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

Liang, P.

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

Liddle, P.

K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
[Crossref]

K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993).
[Crossref]

Liu, H.

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

Loose, R.

R. Loose, C. Kaufmann, D. P. Auer, and K. W. Lange, “Human prefrontal and sensory cortical activity during divided attention tasks,” Hum. Brain Mapp. 18(4), 249–259 (2003).
[Crossref]

Lu, C.-M.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

Macaluso, E.

V. Santangelo and E. Macaluso, “The contribution of working memory to divided attention,” Hum. Brain Mapp. 34(1), 158–175 (2013).
[Crossref]

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Magnani, G.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Marcone, A.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Marra, C.

G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
[Crossref]

McKeel, D. W.

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Mesquita, R. C.

Miller, J. P.

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Mohs, R. C.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Morris, J. C.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Mukli, P.

Müller, K.

A. J. Szameitat, T. Schubert, K. Müller, and D. Y. Von Cramon, “Localization of executive functions in dual-task performance with FMRI,” J. Cogn. Neurosci. 14(8), 1184–1199 (2002).
[Crossref]

Nagy, Z.

Nguyen, T.

R. Li, T. Nguyen, T. Potter, and Y. Zhang, “Dynamic cortical connectivity alterations associated with alzheimer’s disease: An EEG and FNIRS integration study,” NeuroImage: Clin. 21, 101622 (2019).
[Crossref]

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

Nyberg, L.

R. Cabeza and L. Nyberg, “Neural bases of learning and memory: functional neuroimaging evidence,” Curr. Opin. Neurol. 13(4), 415–421 (2000).
[Crossref]

Obata, A. N.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

Okada, E.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” NeuroImage 8(1), 69–78 (1998).
[Crossref]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref]

Olloquequi, J.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Pagani, E.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Pantano, P.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Parlato, V.

G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
[Crossref]

Paulesu, E.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Peng, D.-L.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

Perdue, K. L.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

Peró-Cebollero, M.

L. Farràs-Permanyer, J. Guàrdia-Olmos, and M. Peró-Cebollero, “Mild cognitive impairment and FMRI studies of brain functional connectivity: the state of the art,” Front. Psychol. 6, 1095 (2015).
[Crossref]

Perri, R.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Petersen, R. C.

R. C. Petersen, “Early diagnosis of Alzheimer’s disease: is MCI too late?” Curr. Alzheimer Res. 6(4), 324–330 (2009).
[Crossref]

R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” J. Intern. Med. 256(3), 183–194 (2004).
[Crossref]

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

Petrov, D.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Picton, T. W.

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

Pietrini, P.

C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
[Crossref]

Pinti, P.

P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
[Crossref]

Potter, T.

R. Li, T. Nguyen, T. Potter, and Y. Zhang, “Dynamic cortical connectivity alterations associated with alzheimer’s disease: An EEG and FNIRS integration study,” NeuroImage: Clin. 21, 101622 (2019).
[Crossref]

Price, B. H.

A. E. Budson and B. H. Price, “Memory dysfunction,” N. Engl. J. Med. 352(7), 692–699 (2005).
[Crossref]

Price, J. L.

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Purdy, P. D.

F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
[Crossref]

Qi, Z.

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (FNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

Rabins, P. V.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Racz, F. S.

Raichle, M. E.

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. 83(4), 1140–1144 (1986).
[Crossref]

Ranganath, C.

C. Ranganath, M. K. Johnson, and M. D’Esposito, “Prefrontal activity associated with working memory and episodic long-term memory,” Neuropsychologia 41(3), 378–389 (2003).
[Crossref]

Rapoport, S. I.

C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
[Crossref]

Ritchie, K.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Robert, P.

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

Rocca, M. A.

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

Romani, G. L.

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Rosenberg, R. N.

F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
[Crossref]

Rossini, P. M.

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Rossor, M.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Rubin, E. H.

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Rugg, M.

M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
[Crossref]

Rui, G.

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

Sachdev, P.

N. J. Gates and P. Sachdev, “Is cognitive training an effective treatment for preclinical and early Alzheimer’s disease?” J. Alzheimer’s Dis. 42(s4), S551–S559 (2014).
[Crossref]

Sánchez-López, E.

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Santangelo, V.

V. Santangelo and E. Macaluso, “The contribution of working memory to divided attention,” Hum. Brain Mapp. 34(1), 158–175 (2013).
[Crossref]

Sato, H.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

Sawaguchi, T.

T. Sawaguchi and I. Yamane, “Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task,” J. Neurophysiol. 82(5), 2070–2080 (1999).
[Crossref]

Scheich, H.

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

Schneider, S.

A.-C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in psychiatry,” NeuroImage 85, 478–488 (2014).
[Crossref]

Scholkmann, F.

P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
[Crossref]

Schubert, T.

T. Schubert and A. J. Szameitat, “Functional neuroanatomy of interference in overlapping dual tasks: an FMRI study,” Cognit. Brain Res. 17(3), 733–746 (2003).
[Crossref]

A. J. Szameitat, T. Schubert, K. Müller, and D. Y. Von Cramon, “Localization of executive functions in dual-task performance with FMRI,” J. Cogn. Neurosci. 14(8), 1184–1199 (2002).
[Crossref]

Schulz, P. E.

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

Schweiger, M.

Serra, L.

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

Shen, D.

C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
[Crossref]

Shin, M. J.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Shin, Y. B.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Shin, Y.-I.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Singh, A.

A. Kumar, A. Singh, and E. Ekavali, “A review on Alzheimer’s disease pathophysiology and its management: an update,” Pharmacol. Rep. 67(2), 195–203 (2015).
[Crossref]

Smith, G. E.

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

Sperling, R.

R. Sperling, “Functional mri studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease,” Ann. N. Y. Acad. Sci. 1097(1), 146–155 (2007).
[Crossref]

Storandt, M.

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Szameitat, A. J.

T. Schubert and A. J. Szameitat, “Functional neuroanatomy of interference in overlapping dual tasks: an FMRI study,” Cognit. Brain Res. 17(3), 733–746 (2003).
[Crossref]

A. J. Szameitat, T. Schubert, K. Müller, and D. Y. Von Cramon, “Localization of executive functions in dual-task performance with FMRI,” J. Cogn. Neurosci. 14(8), 1184–1199 (2002).
[Crossref]

Tachtsidis, I.

P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
[Crossref]

Tang, T. B.

T. B. Tang and Y. L. Chan, “Functional connectivity analysis on mild Alzheimer’s disease, mild cognitive impairment and normal aging using FNIRS,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE, 2018), pp. 17–20.

Tangalos, E. G.

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

Tanikawa, Y.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

Tennigkeit, F.

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

Thal, L.

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Tian, L.

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

Tulving, E.

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Vecchio, F.

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Villa, G.

G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
[Crossref]

Von Cramon, D. Y.

A. J. Szameitat, T. Schubert, K. Müller, and D. Y. Von Cramon, “Localization of executive functions in dual-task performance with FMRI,” J. Cogn. Neurosci. 14(8), 1184–1199 (2002).
[Crossref]

Wang, K.

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

Wang, L.

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

Wang, Z.

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

Waring, S. C.

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

Wee, C.-Y.

C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
[Crossref]

Weiner, M. F.

F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
[Crossref]

Weis, S.

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

Winblad, B.

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Wu, X.

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

Yamane, I.

T. Sawaguchi and I. Yamane, “Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task,” J. Neurophysiol. 82(5), 2070–2080 (1999).
[Crossref]

Yang, S.

C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
[Crossref]

Yao, L.

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

Yap, P.-T.

C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
[Crossref]

Yetkin, F. Z.

F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
[Crossref]

Yonelinas, A. P.

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

Yoon, J. A.

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

Yücel, M. A.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

Zang, Y.-F.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

Zatorre, R. J.

J. A. Johnson and R. J. Zatorre, “Neural substrates for dividing and focusing attention between simultaneous auditory and visual events,” NeuroImage 31(4), 1673–1681 (2006).
[Crossref]

Zhang, N.

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

Zhang, X.

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

Zhang, Y.

R. Li, T. Nguyen, T. Potter, and Y. Zhang, “Dynamic cortical connectivity alterations associated with alzheimer’s disease: An EEG and FNIRS integration study,” NeuroImage: Clin. 21, 101622 (2019).
[Crossref]

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

Zhang, Y.-J.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

Zhu, C.-Z.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

Alzheimer Dis. Assoc. Disord. (1)

G. Gainotti, C. Marra, G. Villa, V. Parlato, and F. Chiarotti, “Sensitivity and specificity of some neuropsychological markers of Alzheimer disease,” Alzheimer Dis. Assoc. Disord. 12(3), 152–162 (1998).
[Crossref]

Alzheimer’s Res. Ther. (1)

P. Robert, S. Ferris, S. Gauthier, R. Ihl, B. Winblad, and F. Tennigkeit, “Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice?” Alzheimer’s Res. Ther. 2(4), 24 (2010).
[Crossref]

Alzheimers Dement. (1)

A. Alzheimer’s, “2015 Alzheimer’s disease facts and figures,” Alzheimers Dement. 11(3), 332–384 (2015).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

R. Sperling, “Functional mri studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease,” Ann. N. Y. Acad. Sci. 1097(1), 146–155 (2007).
[Crossref]

Appl. Opt. (1)

Arch. Neurol. (3)

R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Arch. Neurol. 58(12), 1985–1992 (2001).
[Crossref]

R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Arch. Neurol. 56(3), 303–308 (1999).
[Crossref]

J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L. Price, E. H. Rubin, and L. Berg, “Mild cognitive impairment represents early-stage Alzheimer disease,” Arch. Neurol. 58(3), 397–405 (2001).
[Crossref]

Biomed. Opt. Express (2)

Brain (2)

C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, “Altered brain functional connectivity and impaired short-term memory in alzheimer’s disease,” Brain 124(4), 739–756 (2001).
[Crossref]

M. Rugg, P. Fletcher, C. Frith, R. Frackowiak, and R. J. Dolan, “Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval,” Brain 119(6), 2073–2083 (1996).
[Crossref]

Brain Imaging Behav. (1)

C.-Y. Wee, S. Yang, P.-T. Yap, D. Shen, and A. D. N. Initiative, “Sparse temporally dynamic resting-state functional connectivity networks for early mci identification,” Brain Imaging Behav. 10(2), 342–356 (2016).
[Crossref]

Brain Res. Bull. (1)

C. Babiloni, A. Ferretti, C. Del Gratta, F. Carducci, F. Vecchio, G. L. Romani, and P. M. Rossini, “Human cortical responses during one-bit delayed-response tasks: an FMRI study,” Brain Res. Bull. 65(5), 383–390 (2005).
[Crossref]

Cereb. Cortex (1)

K. J. Friston, C. D. Frith, P. Fletcher, P. Liddle, and R. S. Frackowiak, “Functional topography: multidimensional scaling and functional connectivity in the brain,” Cereb. Cortex 6(2), 156–164 (1996).
[Crossref]

Cognit. Brain Res. (1)

T. Schubert and A. J. Szameitat, “Functional neuroanatomy of interference in overlapping dual tasks: an FMRI study,” Cognit. Brain Res. 17(3), 733–746 (2003).
[Crossref]

Cortex (1)

F. Clément, S. Gauthier, and S. Belleville, “Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity,” Cortex 49(5), 1268–1279 (2013).
[Crossref]

Curr. Alzheimer Res. (1)

R. C. Petersen, “Early diagnosis of Alzheimer’s disease: is MCI too late?” Curr. Alzheimer Res. 6(4), 324–330 (2009).
[Crossref]

Curr. Opin. Neurol. (1)

R. Cabeza and L. Nyberg, “Neural bases of learning and memory: functional neuroimaging evidence,” Curr. Opin. Neurol. 13(4), 415–421 (2000).
[Crossref]

Eur. Radiol. (1)

F. Z. Yetkin, R. N. Rosenberg, M. F. Weiner, P. D. Purdy, and C. M. Cullum, “Fmri of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease,” Eur. Radiol. 16(1), 193–206 (2006).
[Crossref]

Front. Aging Neurosci. (1)

R. Li, G. Rui, W. Chen, S. Li, P. E. Schulz, and Y. Zhang, “Early detection of Alzheimer’s disease using noninvasive near-infrared spectroscopy,” Front. Aging Neurosci. 10, 366 (2018).
[Crossref]

Front. Hum. Neurosci. (1)

P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-processing of FNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework,” Front. Hum. Neurosci. 12, 505 (2019).
[Crossref]

Front. Psychol. (1)

L. Farràs-Permanyer, J. Guàrdia-Olmos, and M. Peró-Cebollero, “Mild cognitive impairment and FMRI studies of brain functional connectivity: the state of the art,” Front. Psychol. 6, 1095 (2015).
[Crossref]

Hum. Brain Mapp. (5)

E. Düzel, T. W. Picton, R. Cabeza, A. P. Yonelinas, H. Scheich, H.-J. Heinze, and E. Tulving, “Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval,” Hum. Brain Mapp. 13(2), 104–123 (2001).
[Crossref]

R. Loose, C. Kaufmann, D. P. Auer, and K. W. Lange, “Human prefrontal and sensory cortical activity during divided attention tasks,” Hum. Brain Mapp. 18(4), 249–259 (2003).
[Crossref]

V. Santangelo and E. Macaluso, “The contribution of working memory to divided attention,” Hum. Brain Mapp. 34(1), 158–175 (2013).
[Crossref]

F. Agosta, M. A. Rocca, E. Pagani, M. Absinta, G. Magnani, A. Marcone, M. Falautano, G. Comi, M. L. Gorno-Tempini, and M. Filippi, “Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease,” Hum. Brain Mapp. 31, 515–525 (2009).
[Crossref]

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, “Altered functional connectivity in early alzheimer’s disease: A resting-state fmri study,” Hum. Brain Mapp. 28(10), 967–978 (2007).
[Crossref]

J. Alzheimer’s Dis. (1)

N. J. Gates and P. Sachdev, “Is cognitive training an effective treatment for preclinical and early Alzheimer’s disease?” J. Alzheimer’s Dis. 42(s4), S551–S559 (2014).
[Crossref]

J. Biophotonics (1)

T. Nguyen, M. Kim, J. Gwak, J. J. Lee, K. Y. Choi, K. H. Lee, and J. G. Kim, “Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (FNIRS) study,” J. Biophotonics 12(9), 1–10 (2019).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993).
[Crossref]

J. Cogn. Neurosci. (1)

A. J. Szameitat, T. Schubert, K. Müller, and D. Y. Von Cramon, “Localization of executive functions in dual-task performance with FMRI,” J. Cogn. Neurosci. 14(8), 1184–1199 (2002).
[Crossref]

J. Comp. Physiol. Psychol. (1)

R. H. Bauer and J. M. Fuster, “Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys,” J. Comp. Physiol. Psychol. 90(3), 293–302 (1976).
[Crossref]

J. Intern. Med. (1)

R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” J. Intern. Med. 256(3), 183–194 (2004).
[Crossref]

J. Neurol., Neurosurg. Psychiatry (1)

T. T. Kircher, S. Weis, K. Freymann, M. Erb, F. Jessen, W. Grodd, R. Heun, and D. T. Leube, “Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding,” J. Neurol., Neurosurg. Psychiatry 78(8), 812–818 (2007).
[Crossref]

J. Neurophysiol. (1)

T. Sawaguchi and I. Yamane, “Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task,” J. Neurophysiol. 82(5), 2070–2080 (1999).
[Crossref]

J. Neurosci. (1)

S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, “Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas",” J. Neurosci. 13(4), 1479–1497 (1993).
[Crossref]

J. Neurosci. Methods (1)

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of FNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref]

N. Engl. J. Med. (1)

A. E. Budson and B. H. Price, “Memory dysfunction,” N. Engl. J. Med. 352(7), 692–699 (2005).
[Crossref]

Neural Plast. (2)

J. A. Yoon, I. J. Kong, J. Choi, J. Y. Baek, E. J. Kim, Y.-I. Shin, M.-H. Ko, Y. B. Shin, and M. J. Shin, “Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: A near-infrared spectroscopy study,” Neural Plast. 2019, 1–8 (2019).
[Crossref]

J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M. L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, and A. Camins, “Current research therapeutic strategies for Alzheimer’s disease treatment,” Neural Plast. 2016, 1–15 (2016).
[Crossref]

Neurobiol. Aging (2)

D. Lenzi, L. Serra, R. Perri, P. Pantano, G. Lenzi, E. Paulesu, C. Caltagirone, M. Bozzali, and E. Macaluso, “Single domain amnestic mci: a multiple cognitive domains fmri investigation,” Neurobiol. Aging 32(9), 1542–1557 (2011).
[Crossref]

R. Heun, K. Freymann, M. Erb, D. T. Leube, F. Jessen, T. T. Kircher, and W. Grodd, “Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly,” Neurobiol. Aging 28(3), 404–413 (2007).
[Crossref]

NeuroImage (7)

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).
[Crossref]

J. A. Johnson and R. J. Zatorre, “Neural substrates for dividing and focusing attention between simultaneous auditory and visual events,” NeuroImage 31(4), 1673–1681 (2006).
[Crossref]

Z. Qi, X. Wu, Z. Wang, N. Zhang, H. Dong, L. Yao, and K. Li, “Impairment and compensation coexist in amnestic MCI default mode network,” NeuroImage 50(1), 48–55 (2010).
[Crossref]

A.-C. Ehlis, S. Schneider, T. Dresler, and A. J. Fallgatter, “Application of functional near-infrared spectroscopy in psychiatry,” NeuroImage 85, 478–488 (2014).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (FNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” NeuroImage 8(1), 69–78 (1998).
[Crossref]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fnirs signal using multi-distance optodes and independent component analysis,” NeuroImage 85, 150–165 (2014).
[Crossref]

NeuroImage: Clin. (1)

R. Li, T. Nguyen, T. Potter, and Y. Zhang, “Dynamic cortical connectivity alterations associated with alzheimer’s disease: An EEG and FNIRS integration study,” NeuroImage: Clin. 21, 101622 (2019).
[Crossref]

Neuron (1)

H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron 44(1), 109–120 (2004).
[Crossref]

Neurophotonics (1)

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref]

Neuropsychologia (1)

C. Ranganath, M. K. Johnson, and M. D’Esposito, “Prefrontal activity associated with working memory and episodic long-term memory,” Neuropsychologia 41(3), 378–389 (2003).
[Crossref]

Pharmacol. Rep. (1)

A. Kumar, A. Singh, and E. Ekavali, “A review on Alzheimer’s disease pathophysiology and its management: an update,” Pharmacol. Rep. 67(2), 195–203 (2015).
[Crossref]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref]

PLoS One (1)

P. Liang, Z. Li, G. Deshpande, Z. Wang, X. Hu, and K. Li, “Altered causal connectivity of resting state brain networks in amnesic mci,” PLoS One 9(3), e88476 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (2)

S. A. Bunge, T. Klingberg, R. B. Jacobsen, and J. D. Gabrieli, “A resource model of the neural basis of executive working memory,” Proc. Natl. Acad. Sci. 97(7), 3573–3578 (2000).
[Crossref]

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. 83(4), 1140–1144 (1986).
[Crossref]

Sci. Rep. (1)

T. Nguyen, O. Babawale, T. Kim, H. J. Jo, H. Liu, and J. G. Kim, “Exploring brain functional connectivity in rest and sleep states: a FNIRS study,” Sci. Rep. 8(1), 16144–10 (2018).
[Crossref]

Other (2)

S. N. U. B. Hospital, “Standardization of dementia screening tests,” Tech. Rep. 11-1351000-000589, Seoul National University Bundang Hospital (2009).

T. B. Tang and Y. L. Chan, “Functional connectivity analysis on mild Alzheimer’s disease, mild cognitive impairment and normal aging using FNIRS,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE, 2018), pp. 17–20.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. DMTS task-based experiment protocol.
Fig. 2.
Fig. 2. Experimental setup of the fNIRS device. (A) The fNIRS device placed on a participant’s forehead. (B) A schematic diagram of 1.5 cm- and 3 cm-channels in the fNIRS device. (C) 1.5 cm- and 3 cm-channel configurations of the fNIRS device. Each grid size is 15$\times$15 mm. The sources and detectors that overlap with the channel-number notation are not presented.
Fig. 3.
Fig. 3. Explanation of data processing. (A) Averaged time-series signal and correlation matrix of the retrieval phase. (B) ROI detection by selecting channels with a statistically significant (p$\le$0.05) slope of the averaged time-series signal. The slope was calculated by linear regression in each participant, and a one-sample t-test was applied to assess statistical significance. (C) Derivation of FC map. Fisher transformation was applied to the averaged correlation matrix of each participant for the statistical significance level based on a t-test (p$\le$0.05). By averaging the correlation matrices of all participants, the group correlation coefficient with r $\ge$ 0.7 was calculated. Based on the significance level and group correlation coefficient, whole and ROI-based FC maps were derived.
Fig. 4.
Fig. 4. Behavioral results for accuracy and response time in HC and CD groups. In the legend, Q1 (first quartile) indicates the 25-th percentile, and Q3 (third quartile) indicates the 75-th percentile. In this figure, diamond plots described by a dotted red line indicate standard deviation (S.D.), and the mean value of the corresponding box plots. (A) Overall accuracy. (B) Accuracy according to different maintenance times (5 s and 15 s). (C) Overall response time. (D) Response time according to different maintenance times.
Fig. 5.
Fig. 5. WM-related prefrontal hemodynamic signals averaged over trials, channels, and participants. (A) The signal averaged over all channels of the HC group. (B) The signal averaged over 3cm-channel of the HC group. (C) The signal averaged over 1.5cm-channel of the HC group. (D) The signal averaged over all channels of the CD group. (E) The signal averaged over 3cm-channel of the CD group. (F) The signal averaged over 1.5cm-channel of the CD group.
Fig. 6.
Fig. 6. FC analysis of HC and CD groups. Items circled in gray denote channels. Channels boldly circled in blue represent core-hubs. FC between near channels ($\le$0.75 cm) is not displayed. (A) Statistically significant FC of the HC group (p$\le$0.05). (B) Statistically significant FC in the CD group (p$\le$0.05). (C) FC with significant differences between groups (p$\le$0.05, uncorrected). (D) Correlation coefficient of statistically significant FC in the HC group (r$\ge$0.7). (E) Correlation coefficient of statistically significant FC in the CD group (r$\ge$0.7). (F) Differences in correlation coefficients with statistically significant differences between groups (p$\le$0.05, uncorrected).
Fig. 7.
Fig. 7. ROI-based FC analysis of HC and CD groups. Items circled in gray indicate channels. Channels boldly circled in blue indicate core-hubs. Channels selected as ROIs are represented as squares overlapping with gray circles. FC between near channels ($\le$0.75 cm) is not displayed. (A) Statistically significant ROI-related FC in the HC group (p$\le$0.05). (B) Statistically significant ROI-related FC of the CD group (p$\le$0.05). (C) ROI-related FC with statistically significant differences between groups (p$\le$0.05, uncorrected). (D) Correlation coefficient of statistically significant ROI-related FC in the HC group (r$\ge$0.7). (E) Correlation coefficient of statistically significant ROI-related FC in the CD group (r$\ge$0.7). (F) Differences in correlation coefficients with statistically significant differences between groups (p$\le$0.05, uncorrected).

Tables (3)

Tables Icon

Table 1. Demographics of HC and CD groups.

Tables Icon

Table 2. Number of functional connections in each group.

Tables Icon

Table 3. Number of ROI-related functional connections in each group.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r = ρ ( y i , y j ) = a = 1 n ( y i , a y ¯ i ) ( y j , a y ¯ j ) a = 1 n ( y i , a y ¯ i ) 2 a = 1 n ( y j , a y ¯ j ) 2
z = F ( r ) = 1 2 ln 1 + r 1 r

Metrics