Abstract

In this study we demonstrate the use of adaptive optics to correct the biasing effects of optical aberrations when measuring the dynamics of molecules diffusing between cells in multicellular spheroids. Our results indicate that, on average, adaptive optics leads to a reduction of the 3D size of the point spread function that is statistically significant in terms of measured number of molecules and diffusion time. The sensorless approach, which uses the molecular brightness as optimization metric, is validated in a complex, highly heterogeneous, biological environment. This work paves the way towards the design of accurate diffusion measurements of molecules in thick biological specimens.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive optics for fluorescence correlation spectroscopy

Charles-Edouard Leroux, Irène Wang, Jacques Derouard, and Antoine Delon
Opt. Express 19(27) 26839-26849 (2011)

Optimizing the metric in sensorless adaptive optical microscopy with fluorescence fluctuations

Joseph Gallagher, Antoine Delon, Philippe Moreau, and Irène Wang
Opt. Express 25(13) 15558-15571 (2017)

Adaptive optics allows STED-FCS measurements in the cytoplasm of living cells

Aurélien Barbotin, Silvia Galiani, Iztok Urbančič, Christian Eggeling, and Martin J. Booth
Opt. Express 27(16) 23378-23395 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Sutherland, “Cell and environment interactions in tumor microregions: the multicell spheroid model,” Science 240(4849), 177–184 (1988).
    [Crossref] [PubMed]
  2. F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
    [Crossref] [PubMed]
  3. M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
    [Crossref] [PubMed]
  4. M. A. Digman and E. Gratton, “Lessons in fluctuation correlation spectroscopy,” Annu. Rev. Phys. Chem. 62(1), 645–668 (2011).
    [Crossref] [PubMed]
  5. E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
    [Crossref] [PubMed]
  6. E. L. Elson, “Quick tour of fluorescence correlation spectroscopy from its inception,” J. Biomed. Opt. 9(5), 857–864 (2004).
    [Crossref] [PubMed]
  7. T. Kihara, J. Ito, and J. Miyake, “Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy,” PLoS ONE 8(11), e82382 (2013).
    [Crossref] [PubMed]
  8. L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
    [PubMed]
  9. N. K. Reitan, A. Juthajan, T. Lindmo, and C. de Lange Davies, “Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy,” J. Biomed. Opt. 13(5), 054040 (2008).
    [Crossref] [PubMed]
  10. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
    [Crossref] [PubMed]
  11. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83(4), 2300–2317 (2002).
    [Crossref] [PubMed]
  12. C. E. Leroux, I. Wang, J. Derouard, and A. Delon, “Adaptive optics for fluorescence correlation spectroscopy,” Opt. Express 19(27), 26839–26849 (2011).
    [Crossref] [PubMed]
  13. C. E. Leroux, A. Grichine, I. Wang, and A. Delon, “Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope,” Opt. Lett. 38(14), 2401–2403 (2013).
    [Crossref] [PubMed]
  14. D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Biomed. Phys. Rev. A 10(6), 1938–1945 (1974).
    [Crossref]
  15. J. Gallagher, C. E. Leroux, I. Wang, and A. Delon, “Accuracy of adaptive optics correction using fluorescence fluctuations,” Proc. SPIE 8978, 89780A (2014).
    [Crossref]
  16. A. Masuda, K. Ushida, and T. Okamoto, “New Fluorescence Correlation Spectroscopy Enabling Direct Observation of Spatiotemporal Dependence of Diffusion Constants as an Evidence of Anomalous Transport in Extracellular Matrices,” Biophys. J. 88(5), 3584–3591 (2005).
    [Crossref] [PubMed]
  17. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
    [Crossref] [PubMed]
  18. S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
    [Crossref] [PubMed]

2014 (1)

J. Gallagher, C. E. Leroux, I. Wang, and A. Delon, “Accuracy of adaptive optics correction using fluorescence fluctuations,” Proc. SPIE 8978, 89780A (2014).
[Crossref]

2013 (3)

C. E. Leroux, A. Grichine, I. Wang, and A. Delon, “Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope,” Opt. Lett. 38(14), 2401–2403 (2013).
[Crossref] [PubMed]

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

T. Kihara, J. Ito, and J. Miyake, “Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy,” PLoS ONE 8(11), e82382 (2013).
[Crossref] [PubMed]

2012 (1)

S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
[Crossref] [PubMed]

2011 (2)

M. A. Digman and E. Gratton, “Lessons in fluctuation correlation spectroscopy,” Annu. Rev. Phys. Chem. 62(1), 645–668 (2011).
[Crossref] [PubMed]

C. E. Leroux, I. Wang, J. Derouard, and A. Delon, “Adaptive optics for fluorescence correlation spectroscopy,” Opt. Express 19(27), 26839–26849 (2011).
[Crossref] [PubMed]

2010 (2)

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
[PubMed]

2009 (1)

2008 (1)

N. K. Reitan, A. Juthajan, T. Lindmo, and C. de Lange Davies, “Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy,” J. Biomed. Opt. 13(5), 054040 (2008).
[Crossref] [PubMed]

2007 (2)

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[Crossref] [PubMed]

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

2005 (1)

A. Masuda, K. Ushida, and T. Okamoto, “New Fluorescence Correlation Spectroscopy Enabling Direct Observation of Spatiotemporal Dependence of Diffusion Constants as an Evidence of Anomalous Transport in Extracellular Matrices,” Biophys. J. 88(5), 3584–3591 (2005).
[Crossref] [PubMed]

2004 (1)

E. L. Elson, “Quick tour of fluorescence correlation spectroscopy from its inception,” J. Biomed. Opt. 9(5), 857–864 (2004).
[Crossref] [PubMed]

2002 (1)

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83(4), 2300–2317 (2002).
[Crossref] [PubMed]

1988 (1)

R. M. Sutherland, “Cell and environment interactions in tumor microregions: the multicell spheroid model,” Science 240(4849), 177–184 (1988).
[Crossref] [PubMed]

1974 (1)

D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Biomed. Phys. Rev. A 10(6), 1938–1945 (1974).
[Crossref]

Beaurepaire, E.

Bjørkøy, A.

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
[PubMed]

Booth, M. J.

Botcherby, E. J.

Boukari, H.

S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
[Crossref] [PubMed]

Caen, O.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Cappello, G.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

De Lange Davies, C.

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
[PubMed]

N. K. Reitan, A. Juthajan, T. Lindmo, and C. de Lange Davies, “Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy,” J. Biomed. Opt. 13(5), 054040 (2008).
[Crossref] [PubMed]

Débarre, D.

Delarue, M.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Delon, A.

Derouard, J.

Digman, M. A.

M. A. Digman and E. Gratton, “Lessons in fluctuation correlation spectroscopy,” Annu. Rev. Phys. Chem. 62(1), 645–668 (2011).
[Crossref] [PubMed]

Dittfeld, C.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Eikenes, L.

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
[PubMed]

Elgeti, J.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Elson, E. L.

E. L. Elson, “Quick tour of fluorescence correlation spectroscopy from its inception,” J. Biomed. Opt. 9(5), 857–864 (2004).
[Crossref] [PubMed]

Gallagher, J.

J. Gallagher, C. E. Leroux, I. Wang, and A. Delon, “Accuracy of adaptive optics correction using fluorescence fluctuations,” Proc. SPIE 8978, 89780A (2014).
[Crossref]

Gandjbakhche, A.

S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
[Crossref] [PubMed]

Gratton, E.

M. A. Digman and E. Gratton, “Lessons in fluctuation correlation spectroscopy,” Annu. Rev. Phys. Chem. 62(1), 645–668 (2011).
[Crossref] [PubMed]

Grichine, A.

Haustein, E.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

Hernest, M.

Hess, S. T.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83(4), 2300–2317 (2002).
[Crossref] [PubMed]

Hirschhaeuser, F.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Ito, J.

T. Kihara, J. Ito, and J. Miyake, “Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy,” PLoS ONE 8(11), e82382 (2013).
[Crossref] [PubMed]

Joanny, J.-F.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Juthajan, A.

N. K. Reitan, A. Juthajan, T. Lindmo, and C. de Lange Davies, “Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy,” J. Biomed. Opt. 13(5), 054040 (2008).
[Crossref] [PubMed]

Kihara, T.

T. Kihara, J. Ito, and J. Miyake, “Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy,” PLoS ONE 8(11), e82382 (2013).
[Crossref] [PubMed]

Koppel, D. E.

D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Biomed. Phys. Rev. A 10(6), 1938–1945 (1974).
[Crossref]

Kunz-Schughart, L. A.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Leroux, C. E.

Lindmo, T.

N. K. Reitan, A. Juthajan, T. Lindmo, and C. de Lange Davies, “Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy,” J. Biomed. Opt. 13(5), 054040 (2008).
[Crossref] [PubMed]

Martin, J.-L.

Masuda, A.

A. Masuda, K. Ushida, and T. Okamoto, “New Fluorescence Correlation Spectroscopy Enabling Direct Observation of Spatiotemporal Dependence of Diffusion Constants as an Evidence of Anomalous Transport in Extracellular Matrices,” Biophys. J. 88(5), 3584–3591 (2005).
[Crossref] [PubMed]

Menne, H.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Miyake, J.

T. Kihara, J. Ito, and J. Miyake, “Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy,” PLoS ONE 8(11), e82382 (2013).
[Crossref] [PubMed]

Montel, F.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Mueller-Klieser, W.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Nossal, R.

S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
[Crossref] [PubMed]

Okamoto, T.

A. Masuda, K. Ushida, and T. Okamoto, “New Fluorescence Correlation Spectroscopy Enabling Direct Observation of Spatiotemporal Dependence of Diffusion Constants as an Evidence of Anomalous Transport in Extracellular Matrices,” Biophys. J. 88(5), 3584–3591 (2005).
[Crossref] [PubMed]

Pena, A.-M.

Prost, J.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Reitan, N. K.

N. K. Reitan, A. Juthajan, T. Lindmo, and C. de Lange Davies, “Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy,” J. Biomed. Opt. 13(5), 054040 (2008).
[Crossref] [PubMed]

Riley, J.

S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
[Crossref] [PubMed]

Schanne-Klein, M.-C.

Schnell, E. A.

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
[PubMed]

Schwille, P.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

Siaugue, J.-M.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Srinivas, S.

Strupler, M.

Sutherland, R. M.

R. M. Sutherland, “Cell and environment interactions in tumor microregions: the multicell spheroid model,” Science 240(4849), 177–184 (1988).
[Crossref] [PubMed]

Tharaux, P.-L.

Tufto, I.

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
[PubMed]

Ushida, K.

A. Masuda, K. Ushida, and T. Okamoto, “New Fluorescence Correlation Spectroscopy Enabling Direct Observation of Spatiotemporal Dependence of Diffusion Constants as an Evidence of Anomalous Transport in Extracellular Matrices,” Biophys. J. 88(5), 3584–3591 (2005).
[Crossref] [PubMed]

Vignjevic, D.

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

Wang, I.

Watanabe, T.

Webb, W. W.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83(4), 2300–2317 (2002).
[Crossref] [PubMed]

West, J.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Wilson, T.

Zustiak, S.

S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

M. A. Digman and E. Gratton, “Lessons in fluctuation correlation spectroscopy,” Annu. Rev. Phys. Chem. 62(1), 645–668 (2011).
[Crossref] [PubMed]

Anticancer Res. (1)

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De Lange Davies, “Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts,” Anticancer Res. 30(2), 359–368 (2010).
[PubMed]

Biomed. Phys. Rev. A (1)

D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Biomed. Phys. Rev. A 10(6), 1938–1945 (1974).
[Crossref]

Biophys. J. (2)

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83(4), 2300–2317 (2002).
[Crossref] [PubMed]

A. Masuda, K. Ushida, and T. Okamoto, “New Fluorescence Correlation Spectroscopy Enabling Direct Observation of Spatiotemporal Dependence of Diffusion Constants as an Evidence of Anomalous Transport in Extracellular Matrices,” Biophys. J. 88(5), 3584–3591 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

S. Zustiak, J. Riley, H. Boukari, A. Gandjbakhche, and R. Nossal, “Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media,” J. Biomed. Opt. 17(12), 125004 (2012).
[Crossref] [PubMed]

N. K. Reitan, A. Juthajan, T. Lindmo, and C. de Lange Davies, “Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy,” J. Biomed. Opt. 13(5), 054040 (2008).
[Crossref] [PubMed]

E. L. Elson, “Quick tour of fluorescence correlation spectroscopy from its inception,” J. Biomed. Opt. 9(5), 857–864 (2004).
[Crossref] [PubMed]

J. Biotechnol. (1)

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, and G. Cappello, “Mechanical control of cell flow in multicellular spheroids,” Phys. Rev. Lett. 110(13), 138103 (2013).
[Crossref] [PubMed]

PLoS ONE (1)

T. Kihara, J. Ito, and J. Miyake, “Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy,” PLoS ONE 8(11), e82382 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Gallagher, C. E. Leroux, I. Wang, and A. Delon, “Accuracy of adaptive optics correction using fluorescence fluctuations,” Proc. SPIE 8978, 89780A (2014).
[Crossref]

Science (1)

R. M. Sutherland, “Cell and environment interactions in tumor microregions: the multicell spheroid model,” Science 240(4849), 177–184 (1988).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The optical layout. DPSSL: 561 nm diode-pumped solid state laser (Cobolt); DM: 97 actuator deformable mirror (ALPAO); OBJ: 63 × /1.2 water immersed microscope objective (Zeiss); SM: 3 mm X/Y galvanometric mirrors (Cambridge Technology); APD: single photon counting avalanche photodiode (Perkin Elmer); MF: 50 μm multimode fiber; DF: 600 nm long-pass dichroic filter (Chroma); SHWFS: 32 × 32 Shack-Hartmann wavefront sensor for DM calibration (ALPAO); CAM: wide field camera; FM1: flip mirror for DM calibration with SHWFS; FM2: flip mirror for transmission microscopy.
Fig. 2
Fig. 2 Example of a 100 × 100 μm2 confocal image of a spheroid at 20 μm depth. The fluorescence signal mainly originates from SRB molecules located in the extracellular matrix, between the cells. Hot spots, probably corresponding to aggregates of molecules, were avoided when performing FCS measurements.
Fig. 3
Fig. 3 AO benefits as a function of the RMS amplitude of aberration corrected by the DM. The figures of merit correspond to ratios of parameters N, τ1/2 and F, measured before and after AO corrections, averaged over the entire data set obtained on spheroids (black curves, with error bars). For clarity, data obtained on spheroids were uniformly binned over 3 intervals of RMS values. Superimposed curves are the equivalent data obtained with SRB freely diffusing in water, with controlled aberrations introduced by the DM (blue: astigmatism, green: coma, and red: spherical aberration).
Fig. 4
Fig. 4 Comparison of the effects of AO, before (red) and after (blue) one AO cycle performed at one single point. (a) The 25 × 25 μm confocal image. (b) ACF curves obtained at the center of the image. (c) Radially averaged power spectrum of the entire image. (d) Radially averaged power spectrum computed over a reduced field of view (grey sub-box). The optimized mirror shape had a 75 nm RMS amplitude.
Fig. 5
Fig. 5 Comparison of the depth dependence of FCS measurements in spheroids (black, with error bars) and two phantoms in which SRB molecules freely diffuse. Blue: scattering phantom (10 nM SRB in 20% intralipid), which shows the same trend as the spheroid measurements: exponential decay of the photon count rate, and slower increase of the number of molecules. Red: aberrating phantom (10 nM SRB in water-glycerol mix of refractive index 1.4), which shows the sharp increase of the number of molecules, and the slower decay of the photon count rate.

Tables (1)

Tables Icon

Table 1 Impact of AO corrections on the photon count rate and on the FCS parameters (mean ± std). Numbers in parenthesis give the relative variability (std/mean) of the measured quantities. Data are averaged over 50 pairs of measurements, which were acquired in 13 different spheroids.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G(τ)= N ¯ A [ 1+ ( τ/ τ A ) α ] [ 1+ 1 S 2 ( τ/ τ A ) α ] 1/2

Metrics