C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59, R1–R64 (2014).
[Crossref]
H.-R. Tsai, F. Enderli, T. Feurer, and K. J. Webb, “Optimization-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 2, 493–503 (2012).
[Crossref]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
W. Xia and P. S. Low, “Folate-targeted therapies for cancer,” J. Med. Chem. 53, 6811–6824 (2010).
[Crossref]
[PubMed]
S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14, 71–79 (2010).
[Crossref]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
[Crossref]
[PubMed]
P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Acc. Chem. Res. 41, 120–129 (2008).
[Crossref]
B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837–859 (2008).
[Crossref]
[PubMed]
J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA 103, 13872–13877 (2006).
[Crossref]
[PubMed]
F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]
[PubMed]
A. B. Milstein, K. J. Webb, and C. A. Bouman, “Estimation of kinetic model parameters in fluorescence optical diffusion tomography,” J. Opt. Soc. Am. A 22, 1357–1368 (2005).
[Crossref]
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[Crossref]
[PubMed]
S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[Crossref]
[PubMed]
R. M. Sandoval, M. D. Kennedy, P. S. Low, and B. A. Molitoris, “Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy,” Am. J. Physiol.-Cell Ph. 287, C517–C526 (2004).
[Crossref]
C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol. 66, 1406–1414 (2004).
[Crossref]
[PubMed]
C. M. Paulos, M. J. Turk, G. J. Breur, and P. S. Low, “Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis,” Adv. Drug Deliv. Rev. 56, 1205–1217 (2004).
[Crossref]
[PubMed]
J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[Crossref]
[PubMed]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
C. H. Tung, Y. Lin, W. K. Moon, and R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 8, 784–786 (2002).
[Crossref]
J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[Crossref]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
J. Sudimack and R. J. Lee, “Targeted drug delivery via the folate receptor,” Adv. Drug Deliv. Rev. 41, 147–162 (2000).
[Crossref]
[PubMed]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[Crossref]
J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[Crossref]
M.-Y. Su, J.-C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic gd-DTPA enhanced MRI,” Magn. Reson. Med. 32, 714–724 (1994).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
A. C. Riches, J. G. Sharp, D. B. Thomas, and S. V. Smith, “Blood volume determination in the mouse,” J. Physiol. 228, 279–284 (1973).
[PubMed]
T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenze,” Ann. Physik 2, 55 (1948).
[Crossref]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837–859 (2008).
[Crossref]
[PubMed]
G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[Crossref]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
[Crossref]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805–1813 (2009).
[Crossref]
A. B. Milstein, K. J. Webb, and C. A. Bouman, “Estimation of kinetic model parameters in fluorescence optical diffusion tomography,” J. Opt. Soc. Am. A 22, 1357–1368 (2005).
[Crossref]
S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[Crossref]
J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[Crossref]
V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[Crossref]
[PubMed]
C. M. Paulos, M. J. Turk, G. J. Breur, and P. S. Low, “Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis,” Adv. Drug Deliv. Rev. 56, 1205–1217 (2004).
[Crossref]
[PubMed]
B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837–859 (2008).
[Crossref]
[PubMed]
T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
[Crossref]
M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref]
[PubMed]
G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[Crossref]
[PubMed]
J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA 103, 13872–13877 (2006).
[Crossref]
[PubMed]
J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA 103, 13872–13877 (2006).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59, R1–R64 (2014).
[Crossref]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]
[PubMed]
P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Acc. Chem. Res. 41, 120–129 (2008).
[Crossref]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
H.-R. Tsai, F. Enderli, T. Feurer, and K. J. Webb, “Optimization-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 2, 493–503 (2012).
[Crossref]
H.-R. Tsai, F. Enderli, T. Feurer, and K. J. Webb, “Optimization-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 2, 493–503 (2012).
[Crossref]
T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenze,” Ann. Physik 2, 55 (1948).
[Crossref]
J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
V. Gaind, H.-R. Tsai, K. J. Webb, V. Chelvam, and P. S. Low, “Small animal optical diffusion tomography with targeted fluorescence,” J. Opt. Soc. Am. A 30, 1146–1154 (2013).
[Crossref]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
[Crossref]
[PubMed]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805–1813 (2009).
[Crossref]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]
[PubMed]
P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Acc. Chem. Res. 41, 120–129 (2008).
[Crossref]
S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14, 71–79 (2010).
[Crossref]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837–859 (2008).
[Crossref]
[PubMed]
M.-Y. Su, J.-C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic gd-DTPA enhanced MRI,” Magn. Reson. Med. 32, 714–724 (1994).
[Crossref]
[PubMed]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
R. M. Sandoval, M. D. Kennedy, P. S. Low, and B. A. Molitoris, “Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy,” Am. J. Physiol.-Cell Ph. 287, C517–C526 (2004).
[Crossref]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
[Crossref]
[PubMed]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805–1813 (2009).
[Crossref]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2009).
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol. 66, 1406–1414 (2004).
[Crossref]
[PubMed]
J. Sudimack and R. J. Lee, “Targeted drug delivery via the folate receptor,” Adv. Drug Deliv. Rev. 41, 147–162 (2000).
[Crossref]
[PubMed]
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
C. H. Tung, Y. Lin, W. K. Moon, and R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 8, 784–786 (2002).
[Crossref]
V. Gaind, H.-R. Tsai, K. J. Webb, V. Chelvam, and P. S. Low, “Small animal optical diffusion tomography with targeted fluorescence,” J. Opt. Soc. Am. A 30, 1146–1154 (2013).
[Crossref]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
W. Xia and P. S. Low, “Folate-targeted therapies for cancer,” J. Med. Chem. 53, 6811–6824 (2010).
[Crossref]
[PubMed]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
[Crossref]
[PubMed]
P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Acc. Chem. Res. 41, 120–129 (2008).
[Crossref]
J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA 103, 13872–13877 (2006).
[Crossref]
[PubMed]
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol. 66, 1406–1414 (2004).
[Crossref]
[PubMed]
C. M. Paulos, M. J. Turk, G. J. Breur, and P. S. Low, “Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis,” Adv. Drug Deliv. Rev. 56, 1205–1217 (2004).
[Crossref]
[PubMed]
R. M. Sandoval, M. D. Kennedy, P. S. Low, and B. A. Molitoris, “Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy,” Am. J. Physiol.-Cell Ph. 287, C517–C526 (2004).
[Crossref]
C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59, R1–R64 (2014).
[Crossref]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[Crossref]
J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[Crossref]
S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[Crossref]
[PubMed]
A. B. Milstein, K. J. Webb, and C. A. Bouman, “Estimation of kinetic model parameters in fluorescence optical diffusion tomography,” J. Opt. Soc. Am. A 22, 1357–1368 (2005).
[Crossref]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
R. M. Sandoval, M. D. Kennedy, P. S. Low, and B. A. Molitoris, “Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy,” Am. J. Physiol.-Cell Ph. 287, C517–C526 (2004).
[Crossref]
C. H. Tung, Y. Lin, W. K. Moon, and R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 8, 784–786 (2002).
[Crossref]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
M.-Y. Su, J.-C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic gd-DTPA enhanced MRI,” Magn. Reson. Med. 32, 714–724 (1994).
[Crossref]
[PubMed]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837–859 (2008).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[Crossref]
[PubMed]
S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[Crossref]
M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref]
[PubMed]
C. M. Paulos, M. J. Turk, G. J. Breur, and P. S. Low, “Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis,” Adv. Drug Deliv. Rev. 56, 1205–1217 (2004).
[Crossref]
[PubMed]
C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol. 66, 1406–1414 (2004).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[Crossref]
[PubMed]
C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol. 66, 1406–1414 (2004).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
A. C. Riches, J. G. Sharp, D. B. Thomas, and S. V. Smith, “Blood volume determination in the mouse,” J. Physiol. 228, 279–284 (1973).
[PubMed]
R. M. Sandoval, M. D. Kennedy, P. S. Low, and B. A. Molitoris, “Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy,” Am. J. Physiol.-Cell Ph. 287, C517–C526 (2004).
[Crossref]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59, R1–R64 (2014).
[Crossref]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
A. C. Riches, J. G. Sharp, D. B. Thomas, and S. V. Smith, “Blood volume determination in the mouse,” J. Physiol. 228, 279–284 (1973).
[PubMed]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
A. C. Riches, J. G. Sharp, D. B. Thomas, and S. V. Smith, “Blood volume determination in the mouse,” J. Physiol. 228, 279–284 (1973).
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
M.-Y. Su, J.-C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic gd-DTPA enhanced MRI,” Magn. Reson. Med. 32, 714–724 (1994).
[Crossref]
[PubMed]
J. Sudimack and R. J. Lee, “Targeted drug delivery via the folate receptor,” Adv. Drug Deliv. Rev. 41, 147–162 (2000).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
A. C. Riches, J. G. Sharp, D. B. Thomas, and S. V. Smith, “Blood volume determination in the mouse,” J. Physiol. 228, 279–284 (1973).
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
V. Gaind, H.-R. Tsai, K. J. Webb, V. Chelvam, and P. S. Low, “Small animal optical diffusion tomography with targeted fluorescence,” J. Opt. Soc. Am. A 30, 1146–1154 (2013).
[Crossref]
H.-R. Tsai, F. Enderli, T. Feurer, and K. J. Webb, “Optimization-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 2, 493–503 (2012).
[Crossref]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
C. H. Tung, Y. Lin, W. K. Moon, and R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 8, 784–786 (2002).
[Crossref]
V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[Crossref]
[PubMed]
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
C. M. Paulos, M. J. Turk, G. J. Breur, and P. S. Low, “Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis,” Adv. Drug Deliv. Rev. 56, 1205–1217 (2004).
[Crossref]
[PubMed]
C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol. 66, 1406–1414 (2004).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA 103, 13872–13877 (2006).
[Crossref]
[PubMed]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
V. Gaind, H.-R. Tsai, K. J. Webb, V. Chelvam, and P. S. Low, “Small animal optical diffusion tomography with targeted fluorescence,” J. Opt. Soc. Am. A 30, 1146–1154 (2013).
[Crossref]
H.-R. Tsai, F. Enderli, T. Feurer, and K. J. Webb, “Optimization-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 2, 493–503 (2012).
[Crossref]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
[Crossref]
[PubMed]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805–1813 (2009).
[Crossref]
A. B. Milstein, K. J. Webb, and C. A. Bouman, “Estimation of kinetic model parameters in fluorescence optical diffusion tomography,” J. Opt. Soc. Am. A 22, 1357–1368 (2005).
[Crossref]
S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[Crossref]
J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[Crossref]
S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14, 71–79 (2010).
[Crossref]
V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[Crossref]
[PubMed]
C. H. Tung, Y. Lin, W. K. Moon, and R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 8, 784–786 (2002).
[Crossref]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
W. Xia and P. S. Low, “Folate-targeted therapies for cancer,” J. Med. Chem. 53, 6811–6824 (2010).
[Crossref]
[PubMed]
J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA 103, 13872–13877 (2006).
[Crossref]
[PubMed]
B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837–859 (2008).
[Crossref]
[PubMed]
J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[Crossref]
J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[Crossref]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Acc. Chem. Res. 41, 120–129 (2008).
[Crossref]
J. Sudimack and R. J. Lee, “Targeted drug delivery via the folate receptor,” Adv. Drug Deliv. Rev. 41, 147–162 (2000).
[Crossref]
[PubMed]
C. M. Paulos, M. J. Turk, G. J. Breur, and P. S. Low, “Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis,” Adv. Drug Deliv. Rev. 56, 1205–1217 (2004).
[Crossref]
[PubMed]
R. M. Sandoval, M. D. Kennedy, P. S. Low, and B. A. Molitoris, “Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy,” Am. J. Physiol.-Cell Ph. 287, C517–C526 (2004).
[Crossref]
N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem. 338, 284–293 (2005).
[Crossref]
[PubMed]
T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenze,” Ann. Physik 2, 55 (1948).
[Crossref]
M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
[Crossref]
[PubMed]
D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[Crossref]
[PubMed]
C. H. Tung, Y. Lin, W. K. Moon, and R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 8, 784–786 (2002).
[Crossref]
S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14, 71–79 (2010).
[Crossref]
J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[Crossref]
[PubMed]
J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001).
[Crossref]
S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005).
[Crossref]
[PubMed]
H.-R. Tsai, F. Enderli, T. Feurer, and K. J. Webb, “Optimization-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 2, 493–503 (2012).
[Crossref]
S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[Crossref]
Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc. 121, 11684–11689 (1999).
[Crossref]
W. Xia and P. S. Low, “Folate-targeted therapies for cancer,” J. Med. Chem. 53, 6811–6824 (2010).
[Crossref]
[PubMed]
J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[Crossref]
V. Gaind, H.-R. Tsai, K. J. Webb, V. Chelvam, and P. S. Low, “Small animal optical diffusion tomography with targeted fluorescence,” J. Opt. Soc. Am. A 30, 1146–1154 (2013).
[Crossref]
T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
[Crossref]
H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[Crossref]
A. B. Milstein, K. J. Webb, and C. A. Bouman, “Estimation of kinetic model parameters in fluorescence optical diffusion tomography,” J. Opt. Soc. Am. A 22, 1357–1368 (2005).
[Crossref]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805–1813 (2009).
[Crossref]
A. C. Riches, J. G. Sharp, D. B. Thomas, and S. V. Smith, “Blood volume determination in the mouse,” J. Physiol. 228, 279–284 (1973).
[PubMed]
M.-Y. Su, J.-C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic gd-DTPA enhanced MRI,” Magn. Reson. Med. 32, 714–724 (1994).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol. 66, 1406–1414 (2004).
[Crossref]
[PubMed]
V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[Crossref]
[PubMed]
G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011).
[Crossref]
[PubMed]
F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]
[PubMed]
A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
[Crossref]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
[Crossref]
[PubMed]
M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref]
[PubMed]
G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[Crossref]
[PubMed]
C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59, R1–R64 (2014).
[Crossref]
B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837–859 (2008).
[Crossref]
[PubMed]
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A. 107, 4317–4322 (2010).
[Crossref]
[PubMed]
J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA 103, 13872–13877 (2006).
[Crossref]
[PubMed]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2009).