Abstract

Accurate measurement of the highly mineralized transparent surface layer that forms on caries lesions is important for diagnosis of the lesion activity because chemical intervention can slow or reverse the caries process via remineralization. Previous in-vitro and in-vivo studies have demonstrated that polarization-sensitive optical coherence tomography (PS-OCT) can nondestructively image the subsurface lesion structure and the highly mineralized transparent surface zone of caries lesions. The purpose of this study was to develop an approach to automatically process 3-dimensional PS-OCT images and to accurately assess the remineralization process in simulated enamel lesions. Artificial enamel lesions were prepared on twenty bovine enamel blocks using two models to produce varying degree of demineralization and remineralization. The thickness of the transparent surface layer and the integrated reflectivity of the subsurface lesion were measured using PS-OCT. The automated transparent surface layer detection algorithm was able to successfully detect the transparent surface layers with high sensitivity ( = 0.92) and high specificity ( = 0.97). The estimated thickness of the transparent surface layer showed a strong correlation with polarized light microscopy (PLM) measurements of all regions (R2 = 0.90). The integrated reflectivity, ΔR, and the integrated mineral loss, ΔZ, showed a moderate correlation (R2 = 0.32). This study demonstrates that PS-OCT can automatically measure the changes in artificial enamel lesion structure and severity upon exposure to remineralization solutions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system

Yueli Chen, Linda Otis, Daqing Piao, and Quing Zhu
Appl. Opt. 44(11) 2041-2048 (2005)

Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography

Elnaz B. Shokouhi, Marjan Razani, Ashish Gupta, and Nima Tabatabaei
Biomed. Opt. Express 9(9) 3983-3997 (2018)

Laser ultrasonic evaluation of human dental enamel during remineralization treatment

Hsiao-Chuan Wang, Simon Fleming, Yung-Chun Lee, Michael Swain, Susan Law, and Jing Xue
Biomed. Opt. Express 2(2) 345-355 (2011)

References

  • View by:
  • |
  • |
  • |

  1. NIH, “Diagnosis and Management of Dental Caries throughout Life,” pp. 1–24, NIH Consens. Statement (2001).
  2. O. Fejerskov and E. Kidd, eds., Dental Caries: The Disease and its Clinical Management, Blackwell, Oxford (2003).
  3. J. D. B. Featherstone, “Clinical Implications:New Strategies for Caries Prevention,” Indiana University Early Detection of Dental Caries, pp. 287–296 (1996).
  4. J. D. Featherstone, “The science and practice of caries prevention,” J. Am. Dent. Assoc. 131(7), 887–899 (2000).
    [Crossref] [PubMed]
  5. J. M. ten Cate and J. D. B. Featherstone, “Mechanistic aspects of the interactions between fluoride and dental enamel,” Crit. Rev. Oral Biol. Med. 2(3), 283–296 (1991).
    [PubMed]
  6. J. D. B. Featherstone, R. Glena, M. Shariati, and C. P. Shields, “Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration,” J. Dent. Res. 69(Spec No), 620–636 (1990).
    [PubMed]
  7. J. M. Cate and J. Arends, “Remineralization of artificial enamel lesions in vitro,” Caries Res. 11(5), 277–286 (1977).
    [Crossref] [PubMed]
  8. E. A. Kidd, “The histopathology of enamel caries in young and old permanent teeth,” Br. Dent. J. 155(6), 196–198 (1983).
    [Crossref] [PubMed]
  9. K. R. Ekstrand, D. T. Zero, S. Martignon, and N. B. Pitts, “Lesion activity assessment,” Monogr. Oral Sci. 21, 63–90 (2009).
    [Crossref] [PubMed]
  10. H. Kang, C. L. Darling, and D. Fried, “Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography,” Dent. Mater. 28(5), 488–494 (2012).
    [Crossref] [PubMed]
  11. R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
    [Crossref] [PubMed]
  12. S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
    [Crossref] [PubMed]
  13. A. Baumgartner, C. K. Hitzenberger, S. Dicht, H. Sattmann, A. Moritz, W. Sperr, and A. F. Fercher, “Optical coherence tomography for dental structures,” SPIE Proceeding Vol. 3248, pp. 130–136 (1998).
  14. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
    [Crossref] [PubMed]
  15. C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt. 11(3), 034023 (2006).
    [Crossref] [PubMed]
  16. R. S. Jones and D. Fried, “The Effect of High Index Liquids on PS-OCT Imaging of Dental Caries,” SPIE Proceeding Vol. 5687, pp. 34–41 (2005).
  17. K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
    [Crossref] [PubMed]
  18. S. L. Chong, C. L. Darling, and D. Fried, “Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography,” Lasers Surg. Med. 39(5), 422–427 (2007).
    [Crossref] [PubMed]
  19. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
    [Crossref] [PubMed]
  20. R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography,” Caries Res. 40(2), 81–89 (2006).
    [Crossref] [PubMed]
  21. P. Ngaotheppitak, C. L. Darling, and D. Fried, “Polarization Optical Coherence Tomography for the Measuring the Severity of Caries Lesions,” Lasers Surg. Med. 37(1), 78–88 (2005).
    [Crossref] [PubMed]
  22. C. Lee, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots,” Dent. Mater. 25(6), 721–728 (2009).
    [Crossref] [PubMed]
  23. R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
  24. J. Arends, J. L. Ruben, and D. Inaba, “Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization,” Adv. Dent. Res. 11(4), 403–414 (1997).
    [Crossref] [PubMed]
  25. M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” SPIE Proceeding Vol. 3593, pp. 177–183 (1999).
  26. R. C. Lee, C. L. Darling, and D. Fried, “Automated detection of remineralization in simulated enamel lesions with PS-OCT,” SPIE Proceeding Vol. 8929E, pp. 1–8 (2014).
  27. L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
    [Crossref] [PubMed]
  28. H. Yamazaki and H. C. Margolis, “Enhanced enamel remineralization under acidic conditions in vitro,” J. Dent. Res. 87(6), 569–574 (2008).
    [Crossref] [PubMed]
  29. J. Bush, P. Davis, and M. A. Marcus, “All-Fiber Optic Coherence Domain Interferometric Techniques,” SPIE Proceeding Vol. 4204, pp. 71–80 (2000).
  30. H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
    [Crossref] [PubMed]
  31. Y. K. Lee and W. T. Rhodes, “Nonlinear image processing by a rotating kernel transformation,” Opt. Lett. 15(23), 1383–1385 (1990).
    [Crossref] [PubMed]
  32. K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.
  33. C. L. Darling, J. D. B. Featherstone, C. Q. Le, and D. Fried, “An automated digital microradiography system for assessing tooth demineralization,” SPIE Proceeding Vol. 7162, pp. 1–7 (2009).
  34. Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
    [Crossref] [PubMed]
  35. D. J. White, “The application of in vitro models to research on demineralization and remineralization of the teeth,” Adv. Dent. Res. 9(3), 175–193 (1995).
  36. A. Thylstrup, C. Bruun, and L. Holmen, “In vivo caries models--mechanisms for caries initiation and arrestment,” Adv. Dent. Res. 8(2), 144–157 (1994).
    [PubMed]
  37. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography,” Opt. Express 9(12), 610–615 (2001).
    [Crossref] [PubMed]

2012 (1)

H. Kang, C. L. Darling, and D. Fried, “Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography,” Dent. Mater. 28(5), 488–494 (2012).
[Crossref] [PubMed]

2011 (2)

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

2010 (1)

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

2009 (3)

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots,” Dent. Mater. 25(6), 721–728 (2009).
[Crossref] [PubMed]

K. R. Ekstrand, D. T. Zero, S. Martignon, and N. B. Pitts, “Lesion activity assessment,” Monogr. Oral Sci. 21, 63–90 (2009).
[Crossref] [PubMed]

2008 (1)

H. Yamazaki and H. C. Margolis, “Enhanced enamel remineralization under acidic conditions in vitro,” J. Dent. Res. 87(6), 569–574 (2008).
[Crossref] [PubMed]

2007 (1)

S. L. Chong, C. L. Darling, and D. Fried, “Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography,” Lasers Surg. Med. 39(5), 422–427 (2007).
[Crossref] [PubMed]

2006 (4)

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
[Crossref] [PubMed]

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt. 11(3), 034023 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography,” Caries Res. 40(2), 81–89 (2006).
[Crossref] [PubMed]

2005 (1)

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Polarization Optical Coherence Tomography for the Measuring the Severity of Caries Lesions,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

2002 (1)

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (2)

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

J. D. Featherstone, “The science and practice of caries prevention,” J. Am. Dent. Assoc. 131(7), 887–899 (2000).
[Crossref] [PubMed]

1997 (1)

J. Arends, J. L. Ruben, and D. Inaba, “Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization,” Adv. Dent. Res. 11(4), 403–414 (1997).
[Crossref] [PubMed]

1995 (1)

D. J. White, “The application of in vitro models to research on demineralization and remineralization of the teeth,” Adv. Dent. Res. 9(3), 175–193 (1995).

1994 (1)

A. Thylstrup, C. Bruun, and L. Holmen, “In vivo caries models--mechanisms for caries initiation and arrestment,” Adv. Dent. Res. 8(2), 144–157 (1994).
[PubMed]

1991 (1)

J. M. ten Cate and J. D. B. Featherstone, “Mechanistic aspects of the interactions between fluoride and dental enamel,” Crit. Rev. Oral Biol. Med. 2(3), 283–296 (1991).
[PubMed]

1990 (2)

J. D. B. Featherstone, R. Glena, M. Shariati, and C. P. Shields, “Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration,” J. Dent. Res. 69(Spec No), 620–636 (1990).
[PubMed]

Y. K. Lee and W. T. Rhodes, “Nonlinear image processing by a rotating kernel transformation,” Opt. Lett. 15(23), 1383–1385 (1990).
[Crossref] [PubMed]

1983 (1)

E. A. Kidd, “The histopathology of enamel caries in young and old permanent teeth,” Br. Dent. J. 155(6), 196–198 (1983).
[Crossref] [PubMed]

1981 (1)

L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
[Crossref] [PubMed]

1977 (1)

J. M. Cate and J. Arends, “Remineralization of artificial enamel lesions in vitro,” Caries Res. 11(5), 277–286 (1977).
[Crossref] [PubMed]

Arends, J.

J. Arends, J. L. Ruben, and D. Inaba, “Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization,” Adv. Dent. Res. 11(4), 403–414 (1997).
[Crossref] [PubMed]

J. M. Cate and J. Arends, “Remineralization of artificial enamel lesions in vitro,” Caries Res. 11(5), 277–286 (1977).
[Crossref] [PubMed]

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Breunig, T.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Bruun, C.

A. Thylstrup, C. Bruun, and L. Holmen, “In vivo caries models--mechanisms for caries initiation and arrestment,” Adv. Dent. Res. 8(2), 144–157 (1994).
[PubMed]

Cate, J. M.

J. M. Cate and J. Arends, “Remineralization of artificial enamel lesions in vitro,” Caries Res. 11(5), 277–286 (1977).
[Crossref] [PubMed]

Chan, A. C.

K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.

Chan, K. H.

K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.

Chong, S. L.

S. L. Chong, C. L. Darling, and D. Fried, “Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography,” Lasers Surg. Med. 39(5), 422–427 (2007).
[Crossref] [PubMed]

Clarkson, B. H.

L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
[Crossref] [PubMed]

Darling, C. L.

H. Kang, C. L. Darling, and D. Fried, “Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography,” Dent. Mater. 28(5), 488–494 (2012).
[Crossref] [PubMed]

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots,” Dent. Mater. 25(6), 721–728 (2009).
[Crossref] [PubMed]

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

S. L. Chong, C. L. Darling, and D. Fried, “Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography,” Lasers Surg. Med. 39(5), 422–427 (2007).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography,” Caries Res. 40(2), 81–89 (2006).
[Crossref] [PubMed]

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt. 11(3), 034023 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Polarization Optical Coherence Tomography for the Measuring the Severity of Caries Lesions,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.

Dichtl, S.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Ekstrand, K. R.

K. R. Ekstrand, D. T. Zero, S. Martignon, and N. B. Pitts, “Lesion activity assessment,” Monogr. Oral Sci. 21, 63–90 (2009).
[Crossref] [PubMed]

Featherstone, J. D.

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography,” Caries Res. 40(2), 81–89 (2006).
[Crossref] [PubMed]

J. D. Featherstone, “The science and practice of caries prevention,” J. Am. Dent. Assoc. 131(7), 887–899 (2000).
[Crossref] [PubMed]

Featherstone, J. D. B.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

J. M. ten Cate and J. D. B. Featherstone, “Mechanistic aspects of the interactions between fluoride and dental enamel,” Crit. Rev. Oral Biol. Med. 2(3), 283–296 (1991).
[PubMed]

J. D. B. Featherstone, R. Glena, M. Shariati, and C. P. Shields, “Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration,” J. Dent. Res. 69(Spec No), 620–636 (1990).
[PubMed]

Featherstone, M. J.

L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
[Crossref] [PubMed]

Fercher, A.

Fercher, A. F.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Fried, D.

H. Kang, C. L. Darling, and D. Fried, “Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography,” Dent. Mater. 28(5), 488–494 (2012).
[Crossref] [PubMed]

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots,” Dent. Mater. 25(6), 721–728 (2009).
[Crossref] [PubMed]

S. L. Chong, C. L. Darling, and D. Fried, “Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography,” Lasers Surg. Med. 39(5), 422–427 (2007).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography,” Caries Res. 40(2), 81–89 (2006).
[Crossref] [PubMed]

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt. 11(3), 034023 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Polarization Optical Coherence Tomography for the Measuring the Severity of Caries Lesions,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.

Fried, D. L.

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

Fried, W. A.

K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.

Glena, R.

J. D. B. Featherstone, R. Glena, M. Shariati, and C. P. Shields, “Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration,” J. Dent. Res. 69(Spec No), 620–636 (1990).
[PubMed]

Ha, H.

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Holmen, L.

A. Thylstrup, C. Bruun, and L. Holmen, “In vivo caries models--mechanisms for caries initiation and arrestment,” Adv. Dent. Res. 8(2), 144–157 (1994).
[PubMed]

Huynh, G. D.

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt. 11(3), 034023 (2006).
[Crossref] [PubMed]

Inaba, D.

J. Arends, J. L. Ruben, and D. Inaba, “Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization,” Adv. Dent. Res. 11(4), 403–414 (1997).
[Crossref] [PubMed]

Jeong, B.

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

Jiao, J. J.

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

Jones, R. S.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography,” Caries Res. 40(2), 81–89 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
[Crossref] [PubMed]

Jung, I. O.

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

Kang, H.

H. Kang, C. L. Darling, and D. Fried, “Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography,” Dent. Mater. 28(5), 488–494 (2012).
[Crossref] [PubMed]

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

Karamata, B.

Kidd, E. A.

E. A. Kidd, “The histopathology of enamel caries in young and old permanent teeth,” Br. Dent. J. 155(6), 196–198 (1983).
[Crossref] [PubMed]

Kim, K. H.

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

Lasser, T.

Le, M. H.

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

Lee, C.

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots,” Dent. Mater. 25(6), 721–728 (2009).
[Crossref] [PubMed]

Lee, C. Q.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Lee, S. J.

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

Lee, Y. K.

Li, N.

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

Mai, S.

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

Manesh, S. K.

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

Mao, J.

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

Margolis, H. C.

H. Yamazaki and H. C. Margolis, “Enhanced enamel remineralization under acidic conditions in vitro,” J. Dent. Res. 87(6), 569–574 (2008).
[Crossref] [PubMed]

Martignon, S.

K. R. Ekstrand, D. T. Zero, S. Martignon, and N. B. Pitts, “Lesion activity assessment,” Monogr. Oral Sci. 21, 63–90 (2009).
[Crossref] [PubMed]

Moritz, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Nam, K. H.

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

Ngaotheppitak, P.

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Polarization Optical Coherence Tomography for the Measuring the Severity of Caries Lesions,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

Pashley, D. H.

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

Pitts, N. B.

K. R. Ekstrand, D. T. Zero, S. Martignon, and N. B. Pitts, “Lesion activity assessment,” Monogr. Oral Sci. 21, 63–90 (2009).
[Crossref] [PubMed]

Rhodes, W. T.

Robl, B.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Ruben, J. L.

J. Arends, J. L. Ruben, and D. Inaba, “Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization,” Adv. Dent. Res. 11(4), 403–414 (1997).
[Crossref] [PubMed]

Sattmann, H.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Shariati, M.

J. D. B. Featherstone, R. Glena, M. Shariati, and C. P. Shields, “Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration,” J. Dent. Res. 69(Spec No), 620–636 (1990).
[PubMed]

Shields, C. P.

J. D. B. Featherstone, R. Glena, M. Shariati, and C. P. Shields, “Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration,” J. Dent. Res. 69(Spec No), 620–636 (1990).
[PubMed]

Silverstone, L. M.

L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
[Crossref] [PubMed]

Simon, J. C.

K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.

Sperr, W.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Sticker, M.

Tay, F. R.

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

ten Cate, J. M.

J. M. ten Cate and J. D. B. Featherstone, “Mechanistic aspects of the interactions between fluoride and dental enamel,” Crit. Rev. Oral Biol. Med. 2(3), 283–296 (1991).
[PubMed]

Thylstrup, A.

A. Thylstrup, C. Bruun, and L. Holmen, “In vivo caries models--mechanisms for caries initiation and arrestment,” Adv. Dent. Res. 8(2), 144–157 (1994).
[PubMed]

Wefel, J. S.

L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
[Crossref] [PubMed]

White, D. J.

D. J. White, “The application of in vitro models to research on demineralization and remineralization of the teeth,” Adv. Dent. Res. 9(3), 175–193 (1995).

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Yamazaki, H.

H. Yamazaki and H. C. Margolis, “Enhanced enamel remineralization under acidic conditions in vitro,” J. Dent. Res. 87(6), 569–574 (2008).
[Crossref] [PubMed]

Yiu, C. K.

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

Zawadzki, R.

Zero, D. T.

K. R. Ekstrand, D. T. Zero, S. Martignon, and N. B. Pitts, “Lesion activity assessment,” Monogr. Oral Sci. 21, 63–90 (2009).
[Crossref] [PubMed]

Zimmerman, B. F.

L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
[Crossref] [PubMed]

Acta Biomater. (1)

Y. Liu, S. Mai, N. Li, C. K. Yiu, J. Mao, D. H. Pashley, and F. R. Tay, “Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds,” Acta Biomater. 7(4), 1742–1751 (2011).
[Crossref] [PubMed]

Adv. Dent. Res. (3)

D. J. White, “The application of in vitro models to research on demineralization and remineralization of the teeth,” Adv. Dent. Res. 9(3), 175–193 (1995).

A. Thylstrup, C. Bruun, and L. Holmen, “In vivo caries models--mechanisms for caries initiation and arrestment,” Adv. Dent. Res. 8(2), 144–157 (1994).
[PubMed]

J. Arends, J. L. Ruben, and D. Inaba, “Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization,” Adv. Dent. Res. 11(4), 403–414 (1997).
[Crossref] [PubMed]

Br. Dent. J. (1)

E. A. Kidd, “The histopathology of enamel caries in young and old permanent teeth,” Br. Dent. J. 155(6), 196–198 (1983).
[Crossref] [PubMed]

Caries Res. (4)

J. M. Cate and J. Arends, “Remineralization of artificial enamel lesions in vitro,” Caries Res. 11(5), 277–286 (1977).
[Crossref] [PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

L. M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson, and M. J. Featherstone, “Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid,” Caries Res. 15(2), 138–157 (1981).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography,” Caries Res. 40(2), 81–89 (2006).
[Crossref] [PubMed]

Crit. Rev. Oral Biol. Med. (1)

J. M. ten Cate and J. D. B. Featherstone, “Mechanistic aspects of the interactions between fluoride and dental enamel,” Crit. Rev. Oral Biol. Med. 2(3), 283–296 (1991).
[PubMed]

Dent. Mater. (2)

H. Kang, C. L. Darling, and D. Fried, “Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography,” Dent. Mater. 28(5), 488–494 (2012).
[Crossref] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots,” Dent. Mater. 25(6), 721–728 (2009).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Kang, J. J. Jiao, C. Lee, M. H. Le, C. L. Darling, and D. L. Fried, “Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 16(4), 870–876 (2010).
[Crossref] [PubMed]

J. Am. Dent. Assoc. (1)

J. D. Featherstone, “The science and practice of caries prevention,” J. Am. Dent. Assoc. 131(7), 887–899 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

R. S. Jones, C. L. Darling, J. D. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).
[Crossref] [PubMed]

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt. 11(3), 034023 (2006).
[Crossref] [PubMed]

K. H. Nam, B. Jeong, I. O. Jung, H. Ha, K. H. Kim, and S. J. Lee, “Measurement of anisotropic reflection of flowing blood using optical coherence tomography,” J. Biomed. Opt. 16(12), 120502 (2011).
[Crossref] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. Breunig, and C. Q. Lee, “Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 11(1), 014016 (2006).

J. Dent. Res. (2)

H. Yamazaki and H. C. Margolis, “Enhanced enamel remineralization under acidic conditions in vitro,” J. Dent. Res. 87(6), 569–574 (2008).
[Crossref] [PubMed]

J. D. B. Featherstone, R. Glena, M. Shariati, and C. P. Shields, “Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration,” J. Dent. Res. 69(Spec No), 620–636 (1990).
[PubMed]

Lasers Surg. Med. (2)

S. L. Chong, C. L. Darling, and D. Fried, “Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography,” Lasers Surg. Med. 39(5), 422–427 (2007).
[Crossref] [PubMed]

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Polarization Optical Coherence Tomography for the Measuring the Severity of Caries Lesions,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

Monogr. Oral Sci. (1)

K. R. Ekstrand, D. T. Zero, S. Martignon, and N. B. Pitts, “Lesion activity assessment,” Monogr. Oral Sci. 21, 63–90 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (10)

NIH, “Diagnosis and Management of Dental Caries throughout Life,” pp. 1–24, NIH Consens. Statement (2001).

O. Fejerskov and E. Kidd, eds., Dental Caries: The Disease and its Clinical Management, Blackwell, Oxford (2003).

J. D. B. Featherstone, “Clinical Implications:New Strategies for Caries Prevention,” Indiana University Early Detection of Dental Caries, pp. 287–296 (1996).

R. S. Jones and D. Fried, “The Effect of High Index Liquids on PS-OCT Imaging of Dental Caries,” SPIE Proceeding Vol. 5687, pp. 34–41 (2005).

A. Baumgartner, C. K. Hitzenberger, S. Dicht, H. Sattmann, A. Moritz, W. Sperr, and A. F. Fercher, “Optical coherence tomography for dental structures,” SPIE Proceeding Vol. 3248, pp. 130–136 (1998).

J. Bush, P. Davis, and M. A. Marcus, “All-Fiber Optic Coherence Domain Interferometric Techniques,” SPIE Proceeding Vol. 4204, pp. 71–80 (2000).

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” SPIE Proceeding Vol. 3593, pp. 177–183 (1999).

R. C. Lee, C. L. Darling, and D. Fried, “Automated detection of remineralization in simulated enamel lesions with PS-OCT,” SPIE Proceeding Vol. 8929E, pp. 1–8 (2014).

K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, and D. Fried, “Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography,” J. Biophotonics. In press.

C. L. Darling, J. D. B. Featherstone, C. Q. Le, and D. Fried, “An automated digital microradiography system for assessing tooth demineralization,” SPIE Proceeding Vol. 7162, pp. 1–7 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 PLM, CP-OCT and TMR images of the samples from the acidic pH remineralization model (A-D) and the neutral pH remineralization model (E-H) for the four time periods of exposure to the remineralizing solution. PLM (A and E) and CP-OCT B-scans (unprocessed B and F; processed C and G) show decreased depth of the lesion body as well as an increase in transparent surface layer thickness over the periods of exposure to remineralizing solution. The transparent surface layer is highlighted in yellow in PS-OCT images. TMR (D and H) shows increased mineralization of the lesion after exposure to remineralizing solution for 12 days.
Fig. 2
Fig. 2 A plot of transparent surface layer thickness estimated from the automated algorithm (PS-OCT) vs. thickness determined with histology (PLM). Only the true-positive windows are shown above (n = 44).
Fig. 3
Fig. 3 A plot of estimated lesion (body) depth measurements vs. lesion (body) depth determined with histology (PLM). True-positive windows exhibited the transparent surface layer with both PS-OCT and PLM (n = 44). True-negative windows did not exhibit the transparent surface layer with both PS-OCT and PLM (n = 31). The FWHM method was used for lesion (body) depth estimation. The line with matching color represents the best-fit line.
Fig. 4
Fig. 4 A plot of integrated reflectivity, ΔR, over the estimated lesion (body) depth (PS-OCT) vs. integrated mineral loss, ΔZ, over 200 µm (TMR). Windows with uneven thickness or fractured surface were excluded from the comparison (n = 52).
Fig. 5
Fig. 5 Two-dimensional projection images of the acidic pH remineralization sample. A red dotted line in the visible light reflectance image (A) represents the section shown in Figs. 1(A)-1(C). Two-dimensional OCT surface projection images of the same sample are shown including (B) the integrated reflectivity and (C) the transparent surface layer thickness.

Tables (1)

Tables Icon

Table 1 Mean ± S.D. of PS-OCT, PLM and TMR measurements for the four periods of exposure to the remineralizing solution. Groups with the same letter are statistically similar, P > 0.05 in each row.

Metrics