Abstract

The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm

Weiyao Zou, Xiaofeng Qi, and Stephen A. Burns
Biomed. Opt. Express 2(7) 1986-2004 (2011)

High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors

Diana C. Chen, Steven M. Jones, Dennis A. Silva, and Scot S. Olivier
J. Opt. Soc. Am. A 24(5) 1305-1312 (2007)

Calibration and precompensation of noncommon path aberrations for extreme adaptive optics

Jean-François Sauvage, Thierry Fusco, Gérard Rousset, and Cyril Petit
J. Opt. Soc. Am. A 24(8) 2334-2346 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [Crossref]
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Series in Optical and Imaging Sciences (Oxford University Press, New York, 1998).
  3. J. C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J. P. Huignard, “Nearly diffraction-limited laser focal spot obtained by use of an optically addressed light valve in an adaptive-optics loop,” Opt. Lett. 23(6), 475–477 (1998).
    [Crossref] [PubMed]
  4. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  5. D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
    [PubMed]
  6. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
    [Crossref] [PubMed]
  7. J. C. Wyant, “Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems,” Appl. Opt. 14(11), 2622–2626 (1975).
    [Crossref] [PubMed]
  8. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67(3), 360–369 (1977).
    [Crossref]
  9. A. Ghedina, M. Cecconi, R. Ragazzoni, J. Farinato, A. Baruffolo, G. Crimi, E. Diolaiti, S. Esposito, L. Fini, M. Ghigo, E. Marchetti, T. Niero, and A. Puglisi, “On-sky test of the pyramid wavefront sensor,” in Proc. SPIE 4839, Adaptive optical system technologies II (2003), 869–877.
  10. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14(2), 518–526 (2006).
    [Crossref] [PubMed]
  11. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  12. J. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann-Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [Crossref]
  13. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  14. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [Crossref] [PubMed]
  15. Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [Crossref] [PubMed]
  16. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [Crossref] [PubMed]
  17. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
    [Crossref] [PubMed]
  18. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [Crossref] [PubMed]
  19. J. Rha, B. Schroeder, P. Godara, and J. Carroll, “Variable optical activation of human cone photoreceptors visualized using a short coherence light source,” Opt. Lett. 34(24), 3782–3784 (2009).
    [Crossref] [PubMed]
  20. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
    [Crossref] [PubMed]
  21. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
    [Crossref] [PubMed]
  22. E. W. Dees, A. Dubra, and R. C. Baraas, “Variability in parafoveal cone mosaic in normal trichromatic individuals,” Biomed. Opt. Express 2(5), 1351–1358 (2011).
    [Crossref] [PubMed]
  23. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
    [Crossref] [PubMed]
  24. B. Vohnsen and D. Rativa, “Ultrasmall spot size scanning laser ophthalmoscopy,” Biomed. Opt. Express 2(6), 1597–1609 (2011).
    [Crossref] [PubMed]
  25. N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
    [PubMed]
  26. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Indiana university AO-OCT system,” in Adaptive optics for vision science: Principles, practices, design and applications, J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, eds. (John Wiley & Sons, Inc., Hoboken, NJ, 2006), pp. 447–486.
  27. D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
    [Crossref]
  28. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
    [Crossref] [PubMed]
  29. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
    [Crossref] [PubMed]
  30. J. F. Sauvage, T. Fusco, G. Rousset, and C. Petit, “Calibration and precompensation of noncommon path aberrations for extreme adaptive optics,” J. Opt. Soc. Am. A 24(8), 2334–2346 (2007).
    [Crossref] [PubMed]
  31. E. E. Bloemhof and R. G. Dekany, “Metrology for the adaptive optics system at the Palomar 200-in. telescope,” Proc. SPIE 3353, 638–648 (1998).
  32. J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds., Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications, Microwave and Optical Engineering (John Wiley & Sons, Inc, Hoboken, NJ, 2006).
  33. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
    [Crossref] [PubMed]
  34. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
    [Crossref] [PubMed]
  35. R. D. Ferguson, M. Mujat, A. H. Patel, and N. V. Iftimia, “Making Ophthalmic Adaptive Optics Imaging More Adaptive,” in Imaging and Applied Optics, OSA Technical Digest (online) (2013), OM4A.1.
  36. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
    [Crossref] [PubMed]
  37. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
    [Crossref] [PubMed]
  38. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
    [Crossref] [PubMed]
  39. M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
    [Crossref] [PubMed]
  40. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15(26), 18209–18219 (2007).
    [Crossref] [PubMed]
  41. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974).
    [Crossref]
  42. A. Erteza, “Sharpness index and its application to focus control,” Appl. Opt. 15(4), 877–881 (1976).
    [Crossref] [PubMed]
  43. A. Erteza, “Depth of convergence of a sharpness index autofocus system,” Appl. Opt. 16(8), 2273–2278 (1977).
    [Crossref] [PubMed]
  44. F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6(2), 81–91 (1985).
    [Crossref] [PubMed]
  45. L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
    [Crossref] [PubMed]
  46. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
    [Crossref] [PubMed]
  47. B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282(23), 4467–4474 (2009).
    [Crossref]
  48. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
    [Crossref] [PubMed]
  49. A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in The 4th International Workshop on Biomedical Image Registration, (2010)
    [Crossref]
  50. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010).
    [Crossref] [PubMed]
  51. R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express 2(9), 2577–2589 (2011).
    [Crossref] [PubMed]
  52. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
    [Crossref] [PubMed]
  53. Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express 3(7), 1647–1661 (2012).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
[PubMed]

2012 (1)

2011 (8)

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

E. W. Dees, A. Dubra, and R. C. Baraas, “Variability in parafoveal cone mosaic in normal trichromatic individuals,” Biomed. Opt. Express 2(5), 1351–1358 (2011).
[Crossref] [PubMed]

B. Vohnsen and D. Rativa, “Ultrasmall spot size scanning laser ophthalmoscopy,” Biomed. Opt. Express 2(6), 1597–1609 (2011).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref] [PubMed]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express 2(9), 2577–2589 (2011).
[Crossref] [PubMed]

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (4)

2007 (4)

2006 (2)

2005 (2)

2004 (1)

2003 (1)

2002 (2)

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (3)

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
[PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

1998 (2)

1997 (1)

1994 (1)

1991 (1)

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[Crossref] [PubMed]

1987 (1)

1985 (1)

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6(2), 81–91 (1985).
[Crossref] [PubMed]

1977 (2)

1976 (1)

1975 (1)

1974 (1)

1971 (1)

R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Ahnelt, P. K.

Albert, O.

Artal, P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Balderas-Mata, S.

Baldis, H.

Baraas, R. C.

Besecker, J. R.

Bifano, T. G.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
[Crossref]

Bigelow, C. E.

Bille, J.

Biss, D. P.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
[Crossref]

Bloemhof, E. E.

E. E. Bloemhof and R. G. Dekany, “Metrology for the adaptive optics system at the Palomar 200-in. telescope,” Proc. SPIE 3353, 638–648 (1998).

Bonora, S.

Booth, M. J.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
[Crossref] [PubMed]

B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282(23), 4467–4474 (2009).
[Crossref]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
[Crossref] [PubMed]

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Botcherby, E. J.

Bower, B. A.

Buffington, A.

Burns, S. A.

Campbell, M.

Carlini, A. R.

Carroll, J.

Cense, B.

Chamot, S. R.

Chanteloup, J. C.

Chen, L.

Choi, S.

Cook, K.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[Crossref] [PubMed]

Cooper, R. F.

Cox, I.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
[PubMed]

Culp, K.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[Crossref] [PubMed]

Dainty, C.

Debarre, D.

Débarre, D.

Dees, E. W.

Dekany, R. G.

E. E. Bloemhof and R. G. Dekany, “Metrology for the adaptive optics system at the Palomar 200-in. telescope,” Proc. SPIE 3353, 638–648 (1998).

Derby, J. C.

Donnelly Iii, W.

Drexler, W.

Dubis, A. M.

Dubra, A.

Elsner, A. E.

Erteza, A.

Esposito, S.

Evans, C. L.

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fernández, E. J.

Fienup, J. R.

Firestone, L.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[Crossref] [PubMed]

Freudiger, C. W.

Fuchizawa, C.

N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
[PubMed]

Fusco, T.

Gao, W.

Girkin, J. M.

Godara, P.

Goelz, S.

Gradowski, M. A.

Grimm, B.

Groen, F. C. A.

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6(2), 81–91 (1985).
[Crossref] [PubMed]

Guirao, A.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
[PubMed]

Hammer, D. X.

Hardy, J. W.

Harwerth, R. S.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

Hayashi, A.

N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
[PubMed]

Hebert, T.

Hermann, B.

Hofer, B.

Hofer, H.

Huignard, J. P.

Hunter, J. J.

Iftimia, N. V.

Ivers, K. M.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

Izatt, J. A.

Jian, Y.

Jones, S. M.

Jonnal, R. S.

Juskaitis, R.

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Juškaitis, R.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Kawata, S.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Kim, D. Y.

Kocaoglu, O. P.

Koliopoulos, C. L.

Laut, S.

Lefebvre, J. E.

Li, C.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

Liang, J.

Ligthart, G.

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6(2), 81–91 (1985).
[Crossref] [PubMed]

Lin, C. P.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
[Crossref]

Loiseaux, B.

Luo, X.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

Masella, B.

Merigan, W. H.

Migus, A.

Miller, D. T.

Miller, J. J.

Mourou, G.

Muller, R. A.

Nakamura, T.

N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
[PubMed]

Neil, M. A.

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Neil, M. A. A.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Norris, T. B.

Oiwake, T.

N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
[PubMed]

Olivier, S. S.

Palczewska, G.

Palczewski, K.

Patel, N.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

Pavaskar, A.

Petit, C.

Pilli, S.

Platt, B. C.

R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

Poland, S. P.

Porter, J.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
[PubMed]

Povazay, B.

Preston, K.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[Crossref] [PubMed]

Prieto, P. M.

Queener, H.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Rativa, D.

Rha, J.

Rha, J. T.

Romero-Borja, F.

Roorda, A.

Rousset, G.

Sarunic, M. V.

Sattmann, H.

Sauvage, J. F.

Schroeder, B.

Shack, R. V.

R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

Sharma, R.

Sherman, L.

Singer, B.

Sredar, N.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

Srinivas, S.

Sulai, Y.

Sulai, Y. N.

Talsania, N.

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[Crossref] [PubMed]

Tanaka, T.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Tojo, N.

N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
[PubMed]

Torti, C.

Tumbar, R.

Unterhuber, A.

Ustun, T. E.

Vdovin, G.

Vohnsen, B.

Wang, B.

B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282(23), 4467–4474 (2009).
[Crossref]

Wang, Q.

Watanabe, T.

Webb, R. H.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
[Crossref]

Werner, J. S.

Williams, D.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
[PubMed]

Williams, D. R.

Wilson, T.

Wright, A. J.

Wyant, J. C.

Xie, X. S.

Xu, J.

Yamauchi, Y.

Yin, L.

Yoon, G. Y.

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref] [PubMed]

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
[PubMed]

Young, I. T.

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6(2), 81–91 (1985).
[Crossref] [PubMed]

Zamiri, P.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
[Crossref]

Zawadzki, R. J.

Zhang, Y.

Zhao, M.

Zhou, Y.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
[Crossref]

Appl. Opt. (3)

Biomed. Opt. Express (8)

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref] [PubMed]

R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express 2(9), 2577–2589 (2011).
[Crossref] [PubMed]

Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express 3(7), 1647–1661 (2012).
[Crossref] [PubMed]

E. W. Dees, A. Dubra, and R. C. Baraas, “Variability in parafoveal cone mosaic in normal trichromatic individuals,” Biomed. Opt. Express 2(5), 1351–1358 (2011).
[Crossref] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

B. Vohnsen and D. Rativa, “Ultrasmall spot size scanning laser ophthalmoscopy,” Biomed. Opt. Express 2(6), 1597–1609 (2011).
[Crossref] [PubMed]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

N. Tojo, T. Nakamura, C. Fuchizawa, T. Oiwake, and A. Hayashi, “Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa,” Clin. Ophthalmol. 7, 203–210 (2013).
[PubMed]

Cytometry (2)

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6(2), 81–91 (1985).
[Crossref] [PubMed]

L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry 12(3), 195–206 (1991).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci. 52(8), 5473–5480 (2011).
[Crossref] [PubMed]

J. Microsc. (1)

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (5)

J. Refract. Surg. (1)

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16(5), S554–S559 (2000).
[PubMed]

Opt. Commun. (1)

B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282(23), 4467–4474 (2009).
[Crossref]

Opt. Express (11)

R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010).
[Crossref] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref] [PubMed]

C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[Crossref] [PubMed]

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15(26), 18209–18219 (2007).
[Crossref] [PubMed]

Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
[Crossref] [PubMed]

S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14(2), 518–526 (2006).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

E. E. Bloemhof and R. G. Dekany, “Metrology for the adaptive optics system at the Palomar 200-in. telescope,” Proc. SPIE 3353, 638–648 (1998).

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Other (7)

J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Series in Optical and Imaging Sciences (Oxford University Press, New York, 1998).

A. Ghedina, M. Cecconi, R. Ragazzoni, J. Farinato, A. Baruffolo, G. Crimi, E. Diolaiti, S. Esposito, L. Fini, M. Ghigo, E. Marchetti, T. Niero, and A. Puglisi, “On-sky test of the pyramid wavefront sensor,” in Proc. SPIE 4839, Adaptive optical system technologies II (2003), 869–877.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds., Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications, Microwave and Optical Engineering (John Wiley & Sons, Inc, Hoboken, NJ, 2006).

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Indiana university AO-OCT system,” in Adaptive optics for vision science: Principles, practices, design and applications, J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, eds. (John Wiley & Sons, Inc., Hoboken, NJ, 2006), pp. 447–486.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” (Proc of SPIE, San Jose, CA, 2007).
[Crossref]

A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in The 4th International Workshop on Biomedical Image Registration, (2010)
[Crossref]

R. D. Ferguson, M. Mujat, A. H. Patel, and N. V. Iftimia, “Making Ophthalmic Adaptive Optics Imaging More Adaptive,” in Imaging and Applied Optics, OSA Technical Digest (online) (2013), OM4A.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Normalized deformable mirror modes derived from the response matrix defined by the Shack-Hartmann wavefront sensor used in this work [20], ordered from left to right and top to bottom according to decreasing singular value. Each pixel in the diagrams above represents the amplitude of a single deformable mirror actuator.
Fig. 2
Fig. 2 AOSLO schematic where PMT stands for photomultiplier, SHWS for Shack-Hartmann wavefront sensor, and sph for spherical mirror. The letter P indicates a pupil conjugate plane, in addition to those corresponding to the deformable mirror, the optical scanners and the SHWS. The optical elements contributing to the non-common path aberrations between the SHWS and either the illumination or the collection paths of the imaging channel are highlighted with boxes as indicated by the key. The pupil planes P1 and P2 in the imaging channel were used in the validation experiment to place a cylindrical lens (see section 4).
Fig. 3
Fig. 3 Sharpness metric normalized to peak value vs. normalized actuator stroke for the 97 actuators of the Alpao DM used in this study. The plots are spatially arranged to reflect actuator placement on the DM surface. The repeatability of these curves was better than 1% over 3 repetitions.
Fig. 4
Fig. 4 Sharpness metric normalized to peak value vs. normalized stroke for the 97 modes of the Alpao DM used in this study. The plot arrangement corresponds to the modes shown in decreasing singular value (as shown in Fig. 1). The repeatability of these curves was better than 1% over 3 repetitions.
Fig. 5
Fig. 5 AOSLO non-common path aberration estimation algorithm for finding the optimal amplitudes for a given DM set of modes. The rounded rectangles are starting/ending points, parallelograms are inputs/outputs, edged rectangles are operations and diamonds are questions.
Fig. 6
Fig. 6 Central portions of AOSLO images showing small features on the surface of a piece of paper, acquired using a one Airy disk diameter confocal pinhole. The top image was collected with the SHWS-driven correction. The images below show the same feature with SHWS-, intensity metric- and sharpness metric-driven correction, respectively, when placing a cylindrical lens (to induce a known NCPA) in the illumination and collection paths of the AOSLO imaging channel (see pupil planes P1 and P2 in Fig. 2). The bottom plots show intensity profiles indicated by the lines across the images above, normalized to their peak intensity. Scale bar is 10 µm or 2.1 Airy disk diameters.
Fig. 7
Fig. 7 Cumulative image sharpness metric change during the NCPA estimation (each curve of the same color corresponds to one of 3 repetitions). The metric change is relative to the wavefront that minimizes the SHWS aberrations path.
Fig. 8
Fig. 8 NCPA AOSLO wavefront maps and RMS estimated using a wavefront corrector zonal basis. The top three rows show three repetitions of the iterative NCPA estimation, while the fourth and fifth rows show their corresponding averages and standard deviation.
Fig. 9
Fig. 9 NCPA AOSLO wavefront maps and RMS estimated using a wavefront corrector modal basis. The top three rows show three repetitions of the iterative NCPA estimation, while the fourth and fifth rows show their corresponding averages and standard deviation.
Fig. 10
Fig. 10 AOSLO images of paper (~330 µm across) after correcting the aberrations on the SHWS optical path and the illumination path using the image sharpness metric describe above and the zonal and modal DM basis.
Fig. 11
Fig. 11 Cumulative image sharpness metric plots when correcting for a 0.25 D cylindrical lens over four iterations through the entire set of modes/actuators. The predicted RMS wavefront error is shown above (zonal) or below (modal) the wavefront maps at the end of each iteration.
Fig. 12
Fig. 12 AOSLO images of paper with a 0.25D cylindrical lens acquired before (SHWS path correction only) and after four NCPA correction iterations (with correction of the illumination path of the imaging channel).
Fig. 13
Fig. 13 AOSLO images showing the photoreceptor mosaic in a logarithmic intensity scale at 0.5° temporal and superior to fixation in subject JC_0486. These images were collected with aberration correction over the SHWS and the illumination paths (using zonal and modal wavefront corrector basis). Scale bar is 50 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h h illumination ( h collection p ),
M= i I i 2 / ( i I i ) 2 ,
x NCPA = x Illumination - x SHWS ,

Metrics