Abstract

Side branches in the atherosclerotic lesion region are important as they highly influence the treatment strategy selection and optimization. Moreover, they are reliable landmarks for image registration. By providing high resolution delineation of coronary morphology, intravascular optical coherence tomography (IVOCT) has been increasingly used for side branch analysis. This paper presents a fully automated method to detect side branches in IVOCT images, which relies on precise segmentation of the imaging catheter, the protective sheath, the guide wire and the lumen. 25 in-vivo data sets were used for validation. The intraclass correlation coefficient between the algorithmic results and manual delineations for the imaging catheter, the protective sheath and the lumen contour positions was 0.997, 0.949 and 0.974, respectively. All the guide wires were detected correctly and the Dice’s coefficient of the shadow regions behind the guide wire was 0.97. 94.0% of 82 side branches were detected with 5.0% false positives and the Dice’s coefficient of the side branch size was 0.85. In conclusion, the presented method has been demonstrated to be accurate and robust for side branch analysis.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Automatic detection of bioresorbable vascular scaffold struts in intravascular optical coherence tomography pullback runs

Ancong Wang, Shimpei Nakatani, Jeroen Eggermont, Yoshi Onuma, Hector M. Garcia-Garcia, Patrick W. Serruys, Johan H.C. Reiber, and Jouke Dijkstra
Biomed. Opt. Express 5(10) 3589-3602 (2014)

Automated accurate lumen segmentation using L-mode interpolation for three-dimensional intravascular optical coherence tomography

Arsalan Akbar, T. S. Khwaja, Ammar Javaid, Jun-sun Kim, and Jinyong Ha
Biomed. Opt. Express 10(10) 5325-5336 (2019)

Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo

Giovanni J Ughi, Tom Adriaenssens, Walter Desmet, and Jan D’hooge
Biomed. Opt. Express 3(12) 3291-3303 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Hermiller and A. Rizvi, “Commentary: Bifurcations: the problem is the side branch,” J. Invasive Cardiol. 18(10), 461 (2006).
    [PubMed]
  2. G. Karavolias, P. Karyofillis, P. Georgiadou, and V. Voudris, “Unprotected left main distal bifurcation lesion,” Hellenic J. Cardiol. 53(6), 480–484 (2012).
    [PubMed]
  3. W. F. Shen, “Technical refinement for treatment of coronary bifurcation lesion is still demanding,” Chin. Med. J. (Engl.) 122(18), 2083–2085 (2009).
    [PubMed]
  4. B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
    [Crossref] [PubMed]
  5. A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
    [Crossref] [PubMed]
  6. A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
    [PubMed]
  7. W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).
  8. D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
    [PubMed]
  9. M. J. Kern, “Bifurcation angiographic lesion assessment,” Catheter. Cardiovasc. Interv. 82(3), 422–423 (2013).
    [Crossref] [PubMed]
  10. R. A. Costa, M. A. Costa, and I. D. Moussa, “Bifurcation lesion morphology and intravascular ultrasound assessment,” Int. J. Cardiovasc. Imaging 27(2), 189–196 (2011).
    [Crossref] [PubMed]
  11. N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
    [Crossref] [PubMed]
  12. S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
    [Crossref] [PubMed]
  13. J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
    [PubMed]
  14. S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
    [Crossref] [PubMed]
  15. T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
    [Crossref] [PubMed]
  16. R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
    [Crossref] [PubMed]
  17. S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
    [Crossref] [PubMed]
  18. N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
    [Crossref]
  19. A. Maehara, G. S. Mintz, and G. W. Stone, “OCT versus IVUS: accuracy versus clinical utility,” JACC Cardiovasc. Imaging 6(10), 1105–1107 (2013).
    [Crossref] [PubMed]
  20. C. Costopoulos, T. Naganuma, A. Latib, and A. Colombo, “Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the “mini-crush” technique,” JACC Cardiovasc. Interv. 6(12), 1326–1327 (2013).
    [Crossref] [PubMed]
  21. M. J. Grundeken, R. P. Kraak, D. M. de Bruin, and J. J. Wykrzykowska, “Three-dimensional optical coherence tomography evaluation of a left main bifurcation lesion treated with ABSORB(R) bioresorbable vascular scaffold including fenestration and dilatation of the side branch,” Int. J. Cardiol. 168(3), e107–e108 (2013).
    [Crossref] [PubMed]
  22. C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
    [Crossref] [PubMed]
  23. A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
    [Crossref] [PubMed]
  24. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
    [Crossref]
  25. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
    [Crossref] [PubMed]
  26. M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
    [Crossref] [PubMed]
  27. D. Umbach and K. N. Jones, “A few methods for fitting circles to data,” IEEE Trans. Instrum. Meas. 52(6), 1881–1885 (2003).
    [Crossref]
  28. S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
    [Crossref] [PubMed]
  29. L. Hebsgaard, E. H. Christiansen, and N. R. Holm, “Calibration of intravascular optical coherence tomography as presented in peer reviewed publications,” Int. J. Cardiol. 171(1), 92–93 (2014).
    [Crossref] [PubMed]
  30. G. Unal, S. Gurmeric, and S. G. Carlier, “Stent implant follow-up in intravascular optical coherence tomography images,” Int. J. Cardiovasc. Imaging 26(7), 809–816 (2010).
    [Crossref] [PubMed]
  31. G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
    [Crossref] [PubMed]
  32. S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
    [Crossref] [PubMed]
  33. K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
    [Crossref]
  34. S. Gurmeric, G. G. Isguder, S. Carlier, and G. Unal, “A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks,” Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009).
    [PubMed]
  35. Z. Wang, D. Chamie, H. G. Bezerra, H. Yamamoto, J. Kanovsky, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Volumetric quantification of fibrous caps using intravascular optical coherence tomography,” Biomed. Opt. Express 3(6), 1413–1426 (2012).
    [Crossref] [PubMed]

2014 (2)

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

L. Hebsgaard, E. H. Christiansen, and N. R. Holm, “Calibration of intravascular optical coherence tomography as presented in peer reviewed publications,” Int. J. Cardiol. 171(1), 92–93 (2014).
[Crossref] [PubMed]

2013 (9)

S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
[Crossref] [PubMed]

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

M. J. Kern, “Bifurcation angiographic lesion assessment,” Catheter. Cardiovasc. Interv. 82(3), 422–423 (2013).
[Crossref] [PubMed]

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

A. Maehara, G. S. Mintz, and G. W. Stone, “OCT versus IVUS: accuracy versus clinical utility,” JACC Cardiovasc. Imaging 6(10), 1105–1107 (2013).
[Crossref] [PubMed]

C. Costopoulos, T. Naganuma, A. Latib, and A. Colombo, “Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the “mini-crush” technique,” JACC Cardiovasc. Interv. 6(12), 1326–1327 (2013).
[Crossref] [PubMed]

M. J. Grundeken, R. P. Kraak, D. M. de Bruin, and J. J. Wykrzykowska, “Three-dimensional optical coherence tomography evaluation of a left main bifurcation lesion treated with ABSORB(R) bioresorbable vascular scaffold including fenestration and dilatation of the side branch,” Int. J. Cardiol. 168(3), e107–e108 (2013).
[Crossref] [PubMed]

2012 (9)

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

G. Karavolias, P. Karyofillis, P. Georgiadou, and V. Voudris, “Unprotected left main distal bifurcation lesion,” Hellenic J. Cardiol. 53(6), 480–484 (2012).
[PubMed]

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

Z. Wang, D. Chamie, H. G. Bezerra, H. Yamamoto, J. Kanovsky, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Volumetric quantification of fibrous caps using intravascular optical coherence tomography,” Biomed. Opt. Express 3(6), 1413–1426 (2012).
[Crossref] [PubMed]

2011 (3)

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

R. A. Costa, M. A. Costa, and I. D. Moussa, “Bifurcation lesion morphology and intravascular ultrasound assessment,” Int. J. Cardiovasc. Imaging 27(2), 189–196 (2011).
[Crossref] [PubMed]

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

2010 (2)

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

G. Unal, S. Gurmeric, and S. G. Carlier, “Stent implant follow-up in intravascular optical coherence tomography images,” Int. J. Cardiovasc. Imaging 26(7), 809–816 (2010).
[Crossref] [PubMed]

2009 (5)

S. Gurmeric, G. G. Isguder, S. Carlier, and G. Unal, “A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks,” Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009).
[PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

W. F. Shen, “Technical refinement for treatment of coronary bifurcation lesion is still demanding,” Chin. Med. J. (Engl.) 122(18), 2083–2085 (2009).
[PubMed]

2006 (1)

J. Hermiller and A. Rizvi, “Commentary: Bifurcations: the problem is the side branch,” J. Invasive Cardiol. 18(10), 461 (2006).
[PubMed]

2003 (1)

D. Umbach and K. N. Jones, “A few methods for fitting circles to data,” IEEE Trans. Instrum. Meas. 52(6), 1881–1885 (2003).
[Crossref]

1995 (1)

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

1959 (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Adriaenssens, T.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Adrianssens, T.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Akasaka, T.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Albertucci, M.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Baibars, M.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Barlis, P.

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

Bezerra, H. G.

Z. Wang, D. Chamie, H. G. Bezerra, H. Yamamoto, J. Kanovsky, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Volumetric quantification of fibrous caps using intravascular optical coherence tomography,” Biomed. Opt. Express 3(6), 1413–1426 (2012).
[Crossref] [PubMed]

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Biondi-Zoccai, G.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Bissing, M. S.

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Bourantas, G.

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

Brener, S. J.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Brodie, B. R.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Bruining, N.

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Brzezinski, M.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Carlier, S.

S. Gurmeric, G. G. Isguder, S. Carlier, and G. Unal, “A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks,” Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009).
[PubMed]

Carlier, S. G.

G. Unal, S. Gurmeric, and S. G. Carlier, “Stent implant follow-up in intravascular optical coherence tomography images,” Int. J. Cardiovasc. Imaging 26(7), 809–816 (2010).
[Crossref] [PubMed]

Chamie, D.

Choi, D.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Choi, S. H.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Christiansen, E. H.

L. Hebsgaard, E. H. Christiansen, and N. R. Holm, “Calibration of intravascular optical coherence tomography as presented in peer reviewed publications,” Int. J. Cardiol. 171(1), 92–93 (2014).
[Crossref] [PubMed]

Collins, S. M.

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Colombo, A.

C. Costopoulos, T. Naganuma, A. Latib, and A. Colombo, “Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the “mini-crush” technique,” JACC Cardiovasc. Interv. 6(12), 1326–1327 (2013).
[Crossref] [PubMed]

Coosemans, M.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Costa, M. A.

Z. Wang, D. Chamie, H. G. Bezerra, H. Yamamoto, J. Kanovsky, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Volumetric quantification of fibrous caps using intravascular optical coherence tomography,” Biomed. Opt. Express 3(6), 1413–1426 (2012).
[Crossref] [PubMed]

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

R. A. Costa, M. A. Costa, and I. D. Moussa, “Bifurcation lesion morphology and intravascular ultrasound assessment,” Int. J. Cardiovasc. Imaging 27(2), 189–196 (2011).
[Crossref] [PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Costa, R. A.

R. A. Costa, M. A. Costa, and I. D. Moussa, “Bifurcation lesion morphology and intravascular ultrasound assessment,” Int. J. Cardiovasc. Imaging 27(2), 189–196 (2011).
[Crossref] [PubMed]

Costopoulos, C.

C. Costopoulos, T. Naganuma, A. Latib, and A. Colombo, “Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the “mini-crush” technique,” JACC Cardiovasc. Interv. 6(12), 1326–1327 (2013).
[Crossref] [PubMed]

Cremonesi, A.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

D’hooge, J.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

de Bruin, D. M.

M. J. Grundeken, R. P. Kraak, D. M. de Bruin, and J. J. Wykrzykowska, “Three-dimensional optical coherence tomography evaluation of a left main bifurcation lesion treated with ABSORB(R) bioresorbable vascular scaffold including fenestration and dilatation of the side branch,” Int. J. Cardiol. 168(3), e107–e108 (2013).
[Crossref] [PubMed]

de Koning, P. J.

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

Dejong, S. C.

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Dekker, N.

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

Desmet, W.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Di Mario, C.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Di Vito, L.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Dijkstra, E. W.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Dijkstra, J.

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

Ding, F. H.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Du, R.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Dubois, C.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Dudek, D.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Dziewierz, A.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Eggermont, J.

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

Fahy, M.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Fang, X. G.

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Fedele, S.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Foin, N.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Garcia-Garcia, H. M.

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

Georgiadou, P.

G. Karavolias, P. Karyofillis, P. Georgiadou, and V. Voudris, “Unprotected left main distal bifurcation lesion,” Hellenic J. Cardiol. 53(6), 480–484 (2012).
[PubMed]

Ghilencea, L.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Gonzalo, N.

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Grundeken, M. J.

M. J. Grundeken, R. P. Kraak, D. M. de Bruin, and J. J. Wykrzykowska, “Three-dimensional optical coherence tomography evaluation of a left main bifurcation lesion treated with ABSORB(R) bioresorbable vascular scaffold including fenestration and dilatation of the side branch,” Int. J. Cardiol. 168(3), e107–e108 (2013).
[Crossref] [PubMed]

Guagliumi, G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Gurmeric, S.

G. Unal, S. Gurmeric, and S. G. Carlier, “Stent implant follow-up in intravascular optical coherence tomography images,” Int. J. Cardiovasc. Imaging 26(7), 809–816 (2010).
[Crossref] [PubMed]

S. Gurmeric, G. G. Isguder, S. Carlier, and G. Unal, “A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks,” Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009).
[PubMed]

Gwon, H. C.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Habara, M.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Hahn, J. Y.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Hebsgaard, L.

L. Hebsgaard, E. H. Christiansen, and N. R. Holm, “Calibration of intravascular optical coherence tomography as presented in peer reviewed publications,” Int. J. Cardiol. 171(1), 92–93 (2014).
[Crossref] [PubMed]

Her, A. Y.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Hermiller, J.

J. Hermiller and A. Rizvi, “Commentary: Bifurcations: the problem is the side branch,” J. Invasive Cardiol. 18(10), 461 (2006).
[PubMed]

Holm, N. R.

L. Hebsgaard, E. H. Christiansen, and N. R. Holm, “Calibration of intravascular optical coherence tomography as presented in peer reviewed publications,” Int. J. Cardiol. 171(1), 92–93 (2014).
[Crossref] [PubMed]

Hong, B.

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Hong, M. K.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Hou, J.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Hu, J.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Huang, Q. H.

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Iakovou, I.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Isguder, G. G.

S. Gurmeric, G. G. Isguder, S. Carlier, and G. Unal, “A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks,” Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009).
[PubMed]

Jang, I. K.

S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
[Crossref] [PubMed]

Jang, W. J.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Jang, Y.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Janssen, J. P.

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

Jones, K. N.

D. Umbach and K. N. Jones, “A few methods for fitting circles to data,” IEEE Trans. Instrum. Meas. 52(6), 1881–1885 (2003).
[Crossref]

Kagadis, G. C.

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

Kanovsky, J.

Karavolias, G.

G. Karavolias, P. Karyofillis, P. Georgiadou, and V. Voudris, “Unprotected left main distal bifurcation lesion,” Hellenic J. Cardiol. 53(6), 480–484 (2012).
[PubMed]

Karnabatidis, D.

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

Karyofillis, P.

G. Karavolias, P. Karyofillis, P. Georgiadou, and V. Voudris, “Unprotected left main distal bifurcation lesion,” Hellenic J. Cardiol. 53(6), 480–484 (2012).
[PubMed]

Kato, K.

S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
[Crossref] [PubMed]

Katsakiori, P.

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

Katsanos, K.

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

Kayaert, P.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Kern, M. J.

M. J. Kern, “Bifurcation angiographic lesion assessment,” Catheter. Cardiovasc. Interv. 82(3), 422–423 (2013).
[Crossref] [PubMed]

Kim, B. K.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Kim, H. S.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Kim, J. S.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Kim, S. J.

S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
[Crossref] [PubMed]

Kim, Y. H.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Kitabata, H.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Knaapen, M.

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Ko, Y. G.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Koning, G.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

Kozuma, K.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Kraak, R. P.

M. J. Grundeken, R. P. Kraak, D. M. de Bruin, and J. J. Wykrzykowska, “Three-dimensional optical coherence tomography evaluation of a left main bifurcation lesion treated with ABSORB(R) bioresorbable vascular scaffold including fenestration and dilatation of the side branch,” Int. J. Cardiol. 168(3), e107–e108 (2013).
[Crossref] [PubMed]

Kubo, T.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Kwiatkowski, P.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Kyono, H.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Lansky, A. J.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Latib, A.

C. Costopoulos, T. Naganuma, A. Latib, and A. Colombo, “Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the “mini-crush” technique,” JACC Cardiovasc. Interv. 6(12), 1326–1327 (2013).
[Crossref] [PubMed]

Lee, H.

S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
[Crossref] [PubMed]

Li, Z.

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Ligthart, J.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Lindsay, A. C.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Liu, J. M.

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Maehara, A.

A. Maehara, G. S. Mintz, and G. W. Stone, “OCT versus IVUS: accuracy versus clinical utility,” JACC Cardiovasc. Imaging 6(10), 1105–1107 (2013).
[Crossref] [PubMed]

Mandelias, K.

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

Materia, L.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

McKay, C. R.

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Mehanna, E.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Mehran, R.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Mihailidis, D.

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

Mintz, G. S.

A. Maehara, G. S. Mintz, and G. W. Stone, “OCT versus IVUS: accuracy versus clinical utility,” JACC Cardiovasc. Imaging 6(10), 1105–1107 (2013).
[Crossref] [PubMed]

Moussa, I. D.

R. A. Costa, M. A. Costa, and I. D. Moussa, “Bifurcation lesion morphology and intravascular ultrasound assessment,” Int. J. Cardiovasc. Imaging 27(2), 189–196 (2011).
[Crossref] [PubMed]

Naganuma, T.

C. Costopoulos, T. Naganuma, A. Latib, and A. Colombo, “Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the “mini-crush” technique,” JACC Cardiovasc. Interv. 6(12), 1326–1327 (2013).
[Crossref] [PubMed]

Nikiforidis, G.

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

Nikiforidis, G. C.

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

Occhipinti, M.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Okamura, T.

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Onsea, K.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Onuma, Y.

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

Paoletti, G.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Pawar, R.

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

Petersen, C. L.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Pokras, S.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Prati, F.

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Rakowski, T.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Regar, E.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

Reiber, J. H.

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

Rha, S. W.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Rizvi, A.

J. Hermiller and A. Rizvi, “Commentary: Bifurcations: the problem is the side branch,” J. Invasive Cardiol. 18(10), 461 (2006).
[PubMed]

Rollins, A. M.

Z. Wang, D. Chamie, H. G. Bezerra, H. Yamamoto, J. Kanovsky, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Volumetric quantification of fibrous caps using intravascular optical coherence tomography,” Biomed. Opt. Express 3(6), 1413–1426 (2012).
[Crossref] [PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Saito, Y.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Serruys, P. W.

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

Seung, K. B.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Shen, W. F.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

W. F. Shen, “Technical refinement for treatment of coronary bifurcation lesion is still demanding,” Chin. Med. J. (Engl.) 122(18), 2083–2085 (2009).
[PubMed]

Shi, Y. H.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Shin, D. H.

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

Shinke, T.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Shite, J.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Siebes, M.

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Simon, D. I.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Sinnaeve, P.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Song, Y. B.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Sonka, M.

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Stone, G. W.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

A. Maehara, G. S. Mintz, and G. W. Stone, “OCT versus IVUS: accuracy versus clinical utility,” JACC Cardiovasc. Imaging 6(10), 1105–1107 (2013).
[Crossref] [PubMed]

Sun, Z.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

Suzuki, N.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Suzuki, T.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Tahara, S.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Tsantis, S.

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

Tu, S.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

Tuinenburg, J. C.

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

Tyczynski, P.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Uemura, S.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Ughi, G. J.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

Umbach, D.

D. Umbach and K. N. Jones, “A few methods for fitting circles to data,” IEEE Trans. Instrum. Meas. 52(6), 1881–1885 (2003).
[Crossref]

Unal, G.

G. Unal, S. Gurmeric, and S. G. Carlier, “Stent implant follow-up in intravascular optical coherence tomography images,” Int. J. Cardiovasc. Imaging 26(7), 809–816 (2010).
[Crossref] [PubMed]

S. Gurmeric, G. G. Isguder, S. Carlier, and G. Unal, “A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks,” Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009).
[PubMed]

van der Giessen, W. J.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

van Soest, G.

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Verheye, S.

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Viceconte, N.

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

Voudris, V.

G. Karavolias, P. Karyofillis, P. Georgiadou, and V. Voudris, “Unprotected left main distal bifurcation lesion,” Hellenic J. Cardiol. 53(6), 480–484 (2012).
[PubMed]

Wang, A.

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

Wang, K. Z.

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Wang, W.

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Wang, Z.

Wentzel, J.

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

Wilson, D. L.

Witberg, K.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

Wykrzykowska, J. J.

M. J. Grundeken, R. P. Kraak, D. M. de Bruin, and J. J. Wykrzykowska, “Three-dimensional optical coherence tomography evaluation of a left main bifurcation lesion treated with ABSORB(R) bioresorbable vascular scaffold including fenestration and dilatation of the side branch,” Int. J. Cardiol. 168(3), e107–e108 (2013).
[Crossref] [PubMed]

Xu, B.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

Xu, K.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Xu, L.

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

Xu, Y.

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Yamamoto, H.

Yang, Z. K.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Yonetsu, T.

S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
[Crossref] [PubMed]

Yu, B.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Yu, C. W.

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Zhang, J. S.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Zhang, Q.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Zhang, R. Y.

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

Zhang, S.

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

Zhang, X.

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Zmudka, K.

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

Am. J. Cardiol. (1)

S. Fedele, G. Biondi-Zoccai, P. Kwiatkowski, L. Di Vito, M. Occhipinti, A. Cremonesi, M. Albertucci, L. Materia, G. Paoletti, and F. Prati, “Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study),” Am. J. Cardiol. 110(8), 1106–1112 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Cardiovasc. Diagn. Ther. (1)

J. H. Reiber, S. Tu, J. C. Tuinenburg, G. Koning, J. P. Janssen, and J. Dijkstra, “QCA, IVUS and OCT in interventional cardiology in 2011,” Cardiovasc. Diagn. Ther. 1(1), 57–70 (2011).
[PubMed]

Catheter. Cardiovasc. Interv. (1)

M. J. Kern, “Bifurcation angiographic lesion assessment,” Catheter. Cardiovasc. Interv. 82(3), 422–423 (2013).
[Crossref] [PubMed]

Chin. Med. J. (Engl.) (1)

W. F. Shen, “Technical refinement for treatment of coronary bifurcation lesion is still demanding,” Chin. Med. J. (Engl.) 122(18), 2083–2085 (2009).
[PubMed]

Comput. Med. Imaging Graph. (1)

A. Wang, J. Eggermont, N. Dekker, P. J. de Koning, J. H. Reiber, and J. Dijkstra, “3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs,” Comput. Med. Imaging Graph. 38(2), 113–122 (2014).
[Crossref] [PubMed]

EuroIntervention (3)

D. Dudek, R. Mehran, A. Dziewierz, S. J. Brener, T. Rakowski, M. Brzezinski, B. R. Brodie, K. Xu, M. Fahy, A. J. Lansky, K. Zmudka, and G. W. Stone, “Impact of bifurcation target lesion on angiographic, electrocardiographic, and clinical outcomes of patients undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial),” EuroIntervention 9(7), 817–823 (2013).
[PubMed]

C. Di Mario, I. Iakovou, W. J. van der Giessen, N. Foin, T. Adrianssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Lindsay, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention 6(JSuppl J), J99–J106 (2010).
[Crossref] [PubMed]

S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new Fourier-domain optical coherence tomography,” EuroIntervention 6(7), 875–882 (2011).
[Crossref] [PubMed]

Hellenic J. Cardiol. (1)

G. Karavolias, P. Karyofillis, P. Georgiadou, and V. Voudris, “Unprotected left main distal bifurcation lesion,” Hellenic J. Cardiol. 53(6), 480–484 (2012).
[PubMed]

IEEE Trans. Instrum. Meas. (1)

D. Umbach and K. N. Jones, “A few methods for fitting circles to data,” IEEE Trans. Instrum. Meas. 52(6), 1881–1885 (2003).
[Crossref]

IEEE Trans. Med. Imaging (1)

M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. Dejong, S. M. Collins, and C. R. McKay, “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Trans. Med. Imaging 14(4), 719–732 (1995).
[Crossref] [PubMed]

Int. J. Cardiol. (2)

M. J. Grundeken, R. P. Kraak, D. M. de Bruin, and J. J. Wykrzykowska, “Three-dimensional optical coherence tomography evaluation of a left main bifurcation lesion treated with ABSORB(R) bioresorbable vascular scaffold including fenestration and dilatation of the side branch,” Int. J. Cardiol. 168(3), e107–e108 (2013).
[Crossref] [PubMed]

L. Hebsgaard, E. H. Christiansen, and N. R. Holm, “Calibration of intravascular optical coherence tomography as presented in peer reviewed publications,” Int. J. Cardiol. 171(1), 92–93 (2014).
[Crossref] [PubMed]

Int. J. Cardiovasc. Imaging (7)

G. Unal, S. Gurmeric, and S. G. Carlier, “Stent implant follow-up in intravascular optical coherence tomography images,” Int. J. Cardiovasc. Imaging 26(7), 809–816 (2010).
[Crossref] [PubMed]

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012).
[Crossref] [PubMed]

A. Wang, J. Eggermont, N. Dekker, H. M. Garcia-Garcia, R. Pawar, J. H. Reiber, and J. Dijkstra, “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs,” Int. J. Cardiovasc. Imaging 29(1), 29–38 (2013).
[Crossref] [PubMed]

R. A. Costa, M. A. Costa, and I. D. Moussa, “Bifurcation lesion morphology and intravascular ultrasound assessment,” Int. J. Cardiovasc. Imaging 27(2), 189–196 (2011).
[Crossref] [PubMed]

S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. Reiber, and E. Regar, “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography,” Int. J. Cardiovasc. Imaging 28(6), 1315–1327 (2012).
[Crossref] [PubMed]

R. Du, R. Y. Zhang, Q. Zhang, Y. H. Shi, J. Hu, Z. K. Yang, F. H. Ding, J. S. Zhang, and W. F. Shen, “Assessment of the relation between IVUS measurements and clinical outcome in elderly patients after sirolimus-eluting stent implantation for de novo coronary lesions,” Int. J. Cardiovasc. Imaging 28(7), 1653–1662 (2012).
[Crossref] [PubMed]

S. J. Kim, H. Lee, K. Kato, T. Yonetsu, and I. K. Jang, “In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound,” Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
[Crossref] [PubMed]

J. Invasive Cardiol. (2)

A. Y. Her, J. S. Kim, Y. H. Kim, D. H. Shin, B. K. Kim, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, “Histopathologic validation of optical coherence tomography findings of non-apposed side-branch struts in porcine arteries,” J. Invasive Cardiol. 25(7), 364–366 (2013).
[PubMed]

J. Hermiller and A. Rizvi, “Commentary: Bifurcations: the problem is the side branch,” J. Invasive Cardiol. 18(10), 461 (2006).
[PubMed]

JACC Cardiovasc. Imaging (3)

N. Gonzalo, H. M. Garcia-Garcia, E. Regar, P. Barlis, J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys, “In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography,” JACC Cardiovasc. Imaging 2(4), 473–482 (2009).
[Crossref] [PubMed]

A. Maehara, G. S. Mintz, and G. W. Stone, “OCT versus IVUS: accuracy versus clinical utility,” JACC Cardiovasc. Imaging 6(10), 1105–1107 (2013).
[Crossref] [PubMed]

T. Kubo, T. Akasaka, J. Shite, T. Suzuki, S. Uemura, B. Yu, K. Kozuma, H. Kitabata, T. Shinke, M. Habara, Y. Saito, J. Hou, N. Suzuki, and S. Zhang, “OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study,” JACC Cardiovasc. Imaging 6(10), 1095–1104 (2013).
[Crossref] [PubMed]

JACC Cardiovasc. Interv. (2)

C. Costopoulos, T. Naganuma, A. Latib, and A. Colombo, “Optical coherence tomography of a bifurcation lesion treated with bioresorbable vascular scaffolds with the “mini-crush” technique,” JACC Cardiovasc. Interv. 6(12), 1326–1327 (2013).
[Crossref] [PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Med. Image Comput. Comput. Assist. Interv. (1)

S. Gurmeric, G. G. Isguder, S. Carlier, and G. Unal, “A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks,” Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009).
[PubMed]

Med. Phys. (2)

K. Mandelias, S. Tsantis, D. Karnabatidis, P. Katsakiori, D. Mihailidis, G. Nikiforidis, and G. C. Kagadis, “Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography,” Med. Phys. 39(6), 3645–3646 (2012).
[Crossref]

S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography,” Med. Phys. 39(1), 503–513 (2012).
[Crossref] [PubMed]

Neuroradiology (1)

B. Hong, K. Z. Wang, Q. H. Huang, Y. Xu, X. G. Fang, Z. Li, and J. M. Liu, “Effects of metal coverage rate of flow diversion device on neointimal growth at side branch ostium and stented artery: an animal experiment in rabbit abdominal aorta,” Neuroradiology 54(8), 849–855 (2012).
[Crossref] [PubMed]

Numer. Math. (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
[Crossref]

Rev. Esp. Cardiol. (1)

N. Gonzalo, P. W. Serruys, H. M. Garcia-Garcia, G. van Soest, T. Okamura, J. Ligthart, M. Knaapen, S. Verheye, N. Bruining, and E. Regar, “Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries,” Rev. Esp. Cardiol. 62, 615–624 (2009).
[Crossref]

Other (1)

W. J. Jang, Y. B. Song, J. Y. Hahn, S. H. Choi, H. S. Kim, C. W. Yu, S. W. Rha, Y. Jang, K. B. Seung, and H. C. Gwon, “Impact of bifurcation stent technique on clinical outcomes in patients with a medina 0,0,1 coronary bifurcation lesion: Results from the COBIS (COronary BIfurcation Stenting) II registry,” Catheter. Cardiovasc. Interv. in press (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Two in-vivo IVOCT image examples. Figure (a) shows a Cartesian image, while figure (b) shows the corresponding polar image. In both images, a side branch, a guide wire, a metallic stent strut, the imaging catheter and the protective sheath are visible and annotated.
Fig. 2
Fig. 2 The flow chart of the presented side branch detection method.
Fig. 3
Fig. 3 The imaging catheter and two other parallel vertical lines can be seen on the left of figure (a) and the corresponding distance weighted gradient image is given in figure (b). In figure (b), the adluminal wall of the imaging catheter is represented by negative values and the abluminal wall by positive values.
Fig. 4
Fig. 4 Following imaging catheter removal, the intensity profile of a scan-line passing through a guide wire is given in figure (a) and passing through only tissue in figure (b). The candidate clusters (dots) detected in a polar pullback run are presented in two different viewpoints in figures (c) and (d). The yellow dots are noise like metallic struts and the blue dots indicate the guide wire which is continuous during the pullback run and located close to the imaging catheter. Figure (e) shows the shadow edges of the guide wire as blue dots.
Fig. 5
Fig. 5 Figure (a) illustrates a normal protective sheath appearance. However, bright noise may exist between the imaging catheter and the protective sheath like figure (b), between the protective sheath and the lumen contour like figure (c) shows, or inside the protective sheath like figure (d). White curves indicate the detected protective sheath. A 3D visualization of the protective sheath contours in a Cartesian data set is given in figure (e). The corresponding contour center (yellow dots) and the radii (yellow vectors) are presented in figure (f). In figures (e) and (f), the scale between the axial direction and longitudinal direction is about 1:10.
Fig. 6
Fig. 6 Figure (a) shows the originally detected lumen contour (white dots in each scan-line). The segment in front of the guide wire shadow does not fit the lumen trend. Using the guide wire width information, this part of the lumen contour is smoothly interpolated like figure (b) demonstrates.
Fig. 7
Fig. 7 Figure (a) presents a detected lumen contour (yellow) containing part of a big side branch. The white overlay in the contour is the distance transformation result. The lumen center (yellow “+”) and the image center (blue “×”) are given as well. From the lumen center, the leading-edge of intimal layer is detected in all angles and the results are presented as white dots in figures (b) and (c). They show two cross-sections (vertical line 1 and 2) of figure (d). The distance matrix for this pullback run can be treated as a 2D image like figure (d) in which side branches are detected as yellow contours. Arrows indicate the side branches in figures (b) and (c). Figure (e) shows the corresponding 3D side branches (yellow contours). Arrows point to the opening of some side branches. Parts of side branch walls are visible. Figures (f) and (g) show the side branches in an opened vessel with the opposite view angles. To show side branches clearly, the viewing angles follow the side branch direction. The white dots are implanted bioresorbable stent struts.
Fig. 8
Fig. 8 The false positive (based on the dashed lines) resulted from the tissue coverage over the imaging catheter. The angles from the image center to the side branch edges (between the solid lines) are almost the same.

Tables (1)

Tables Icon

Table 1 The similarity and difference among the ground truth (GT_1) from the first observer, the ground truth (GT_2) from the second observer and the algorithmic result (AR). For the imaging catheter radius (ICR), protective sheath radius (PSR) and lumen contour position (LM), the similarity is given as the intraclass correlation coefficient (ICC) and the difference is given as the average size difference (Diff) in pixels. The protective sheath center (PSC) position error is also measured by the average distance difference in pixels. The true positive rate (TP) and false positive rate (FP) are used for side branch (SB) detection performance. The overlaid region for the guide wire (GW) and SB is measured by the average Dice’s coefficient (Dice).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f( x,y)=G(x,y) 0.5 E 1 + E 2 0.5 E 3
G(x,y)={ g(x,y) 0 in the ROI others
E 1 = max i[ 6,3 ) { G(x+i,y) }
E 2 = min i[ 20,17 ) { G(x+i,y) }
E 3 = max i[ 26,23 ) { G(x+i,y) }

Metrics