Abstract

We present a simplified approach for imaging a linear diode bar laser for application as an optical stretcher within a microfluidic geometry. We have recently shown that these linear sources can be used to measure cell mechanical properties; however, the source geometry creates imaging challenges. To minimize intensity losses and simplify implementation within microfluidic systems without the use of expensive objectives, we combine aspheric and cylindrical lenses to create a 1:1 image of the source at the stretcher focal plane and demonstrate effectiveness by measuring the deformation of human red blood cells and neutrophils.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear diode laser bar optical stretchers for cell deformation

Ihab Sraj, David W.M. Marr, and Charles D. Eggleton
Biomed. Opt. Express 1(2) 482-488 (2010)

Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars

Robert W. Applegate, Jeff Squier, Tor Vestad, John Oakey, and David W. M. Marr
Opt. Express 12(19) 4390-4398 (2004)

Calcium imaging in the optical stretcher

Markus Gyger, Daniel Rose, Roland Stange, Tobias Kießling, Mareike Zink, Ben Fabry, and Josef A. Käs
Opt. Express 19(20) 19212-19222 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  4. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
    [Crossref] [PubMed]
  5. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
    [Crossref] [PubMed]
  6. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  7. C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
    [Crossref]
  8. M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
    [Crossref]
  9. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  10. G.-B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
    [Crossref] [PubMed]
  11. S. Rancourt-Grenier, M.-T. Wei, J.-J. Bai, A. Chiou, P. P. Bareil, P.-L. Duval, and Y. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express 18(10), 10462–10472 (2010).
    [Crossref] [PubMed]
  12. T. Kaneta, J. Makihara, and T. Imasaka, “An “Optical Channel”: A technique for the evaluation of biological cell elasticity,” Anal. Chem. 73(24), 5791–5795 (2001).
    [Crossref] [PubMed]
  13. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  14. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
    [Crossref] [PubMed]
  15. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
    [Crossref] [PubMed]
  16. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
    [Crossref] [PubMed]
  17. R. W. Applegate, D. W. M. Marr, J. Squier, and S. W. Graves, “Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars,” Opt. Express 17(19), 16731–16738 (2009).
    [Crossref] [PubMed]
  18. I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
    [Crossref] [PubMed]
  19. T. Sawetzki, C. D. Eggleton, and D. W. M. Marr, “Cell elongation via intrinsic antipodal stretching forces,” Phys. Rev. E. 86(6), 061901 (2012).
    [Crossref] [PubMed]
  20. T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. M. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
    [Crossref] [PubMed]
  21. T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
    [Crossref]
  22. P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77(11), 113702 (2006).
    [Crossref]
  23. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  24. H. Oh, B. Siano, and S. Diamond, “Neutrophil isolation protocol,” J. Vis. Exp. 17, 3791 (2008).
    [PubMed]
  25. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
    [Crossref] [PubMed]
  26. G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, 1st ed. (O'Reilly Media, 2008).
  27. E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
    [Crossref] [PubMed]
  28. K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51(19), 5881–5905 (2003).
    [Crossref]
  29. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41(13), 2494–2507 (2002).
    [Crossref] [PubMed]

2013 (1)

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. M. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

2012 (1)

T. Sawetzki, C. D. Eggleton, and D. W. M. Marr, “Cell elongation via intrinsic antipodal stretching forces,” Phys. Rev. E. 86(6), 061901 (2012).
[Crossref] [PubMed]

2010 (2)

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

S. Rancourt-Grenier, M.-T. Wei, J.-J. Bai, A. Chiou, P. P. Bareil, P.-L. Duval, and Y. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express 18(10), 10462–10472 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

2007 (1)

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[Crossref] [PubMed]

2006 (3)

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref] [PubMed]

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77(11), 113702 (2006).
[Crossref]

2005 (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

2004 (4)

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[Crossref] [PubMed]

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[Crossref]

2003 (2)

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51(19), 5881–5905 (2003).
[Crossref]

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

2002 (1)

2001 (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

T. Kaneta, J. Makihara, and T. Imasaka, “An “Optical Channel”: A technique for the evaluation of biological cell elasticity,” Anal. Chem. 73(24), 5791–5795 (2001).
[Crossref] [PubMed]

1999 (1)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1987 (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1973 (1)

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Applegate, R. W.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Bado, P.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

Bai, J.-J.

Bao, G.

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51(19), 5881–5905 (2003).
[Crossref]

Bareil, P. B.

Bareil, P. P.

Biancaniello, P. L.

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77(11), 113702 (2006).
[Crossref]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Cheong, F.-C.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[Crossref]

Chew, K.

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

Chichester, J.

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

Chiou, A.

Crocker, J. C.

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77(11), 113702 (2006).
[Crossref]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Dao, M.

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Desai, S. A.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. M. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

Diamond, S.

H. Oh, B. Siano, and S. Diamond, “Neutrophil isolation protocol,” J. Vis. Exp. 17, 3791 (2008).
[PubMed]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Dugan, M. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

Duval, P.-L.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Eggleton, C. D.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. M. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

T. Sawetzki, C. D. Eggleton, and D. W. M. Marr, “Cell elongation via intrinsic antipodal stretching forces,” Phys. Rev. E. 86(6), 061901 (2012).
[Crossref] [PubMed]

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

El-Ali, J.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Evans, E. A.

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

Gallet, F.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Graves, S. W.

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Hénon, S.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Hoover, E.

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

Imasaka, T.

T. Kaneta, J. Makihara, and T. Imasaka, “An “Optical Channel”: A technique for the evaluation of biological cell elasticity,” Anal. Chem. 73(24), 5791–5795 (2001).
[Crossref] [PubMed]

Jensen, K. F.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref] [PubMed]

Jimenez, R.

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

Kaneta, T.

T. Kaneta, J. Makihara, and T. Imasaka, “An “Optical Channel”: A technique for the evaluation of biological cell elasticity,” Anal. Chem. 73(24), 5791–5795 (2001).
[Crossref] [PubMed]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Lenormand, G.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Liao, G.-B.

Lim, C.

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Makihara, J.

T. Kaneta, J. Makihara, and T. Imasaka, “An “Optical Channel”: A technique for the evaluation of biological cell elasticity,” Anal. Chem. 73(24), 5791–5795 (2001).
[Crossref] [PubMed]

Marr, D. W. M.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. M. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

T. Sawetzki, C. D. Eggleton, and D. W. M. Marr, “Cell elongation via intrinsic antipodal stretching forces,” Phys. Rev. E. 86(6), 061901 (2012).
[Crossref] [PubMed]

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

R. W. Applegate, D. W. M. Marr, J. Squier, and S. W. Graves, “Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars,” Opt. Express 17(19), 16731–16738 (2009).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[Crossref] [PubMed]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[Crossref] [PubMed]

Oh, H.

H. Oh, B. Siano, and S. Diamond, “Neutrophil isolation protocol,” J. Vis. Exp. 17, 3791 (2008).
[PubMed]

Rancourt-Grenier, S.

Richert, A.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Rohrbach, A.

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Said, A. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

Sawetzki, T.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. M. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

T. Sawetzki, C. D. Eggleton, and D. W. M. Marr, “Cell elongation via intrinsic antipodal stretching forces,” Phys. Rev. E. 86(6), 061901 (2012).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schueller, O. J.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Sheng, Y.

Siano, B.

H. Oh, B. Siano, and S. Diamond, “Neutrophil isolation protocol,” J. Vis. Exp. 17, 3791 (2008).
[PubMed]

Sorger, P. K.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref] [PubMed]

Sow, C.

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

Sow, C.-H.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[Crossref]

Squier, J.

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

R. W. Applegate, D. W. M. Marr, J. Squier, and S. W. Graves, “Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars,” Opt. Express 17(19), 16731–16738 (2009).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[Crossref] [PubMed]

Sraj, I.

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

Stelzer, E. H. K.

Suresh, S.

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[Crossref] [PubMed]

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51(19), 5881–5905 (2003).
[Crossref]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Van Vliet, K. J.

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51(19), 5881–5905 (2003).
[Crossref]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[Crossref] [PubMed]

Wei, M.-T.

Whitesides, G. M.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Yu, T.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[Crossref]

Acta Biomater. (1)

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[Crossref] [PubMed]

Acta Mater. (2)

K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51(19), 5881–5905 (2003).
[Crossref]

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

Anal. Chem. (2)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

T. Kaneta, J. Makihara, and T. Imasaka, “An “Optical Channel”: A technique for the evaluation of biological cell elasticity,” Anal. Chem. 73(24), 5791–5795 (2001).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Appl. Opt. (1)

Biophys. J. (5)

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. M. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15(4), 047010 (2010).
[Crossref] [PubMed]

J. Mech. Phys. Solids (1)

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

J. Vis. Exp. (1)

H. Oh, B. Siano, and S. Diamond, “Neutrophil isolation protocol,” J. Vis. Exp. 17, 3791 (2008).
[PubMed]

Lab Chip (1)

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[Crossref] [PubMed]

Nanotechnology (1)

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[Crossref]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. E. (1)

T. Sawetzki, C. D. Eggleton, and D. W. M. Marr, “Cell elongation via intrinsic antipodal stretching forces,” Phys. Rev. E. 86(6), 061901 (2012).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Rev. Sci. Instrum. (2)

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77(11), 113702 (2006).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Other (1)

G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, 1st ed. (O'Reilly Media, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustration of the optical system parallel to the extended source axis. Not to scale. Light from the laser source (LS) passes through the BK-7 window (W) and is collimated by the first aspheric lens (A). The cylindrical lenses (C) have no optical power along this axis, leaving the beam unchanged. The beam is refocused by the second asphere (A) and passes through a coverslip window (W) before forming the laser image (LI).
Fig. 2
Fig. 2 Illustration of the optical system perpendicular to the extended source axis. Not to scale. Optical component labeling corresponds to Fig. 1. (a) Light from the source is collimated by the asphere, but experiences extension along the laser axis. (b) Cylindrical lenses correct for extension of the collimated light. (c) The laser is refocused by the final asphere.
Fig. 3
Fig. 3 Optical stretching setup and generation of optical stretching force.
Fig. 4
Fig. 4 Linear optical trap and trapped colloidal particles.
Fig. 5
Fig. 5 Red blood cell stretching as a function of measured diode laser power (n = 75) between coverslips (n = 29) and in 0.5 mm (n = 18), 0.8 mm (n = 12) PDMS devices. Corrected NA = 0.28 and corrected NA = 0.39 data adapted from [19]. Dotted white bar illustrates position of the optical stretcher and error bars indicate standard deviation.

Metrics