Abstract

Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography

Melissa M. Eberle, Carissa L. Reynolds, Jenny I. Szu, Yan Wang, Anne M. Hansen, Mike S. Hsu, M. Shahidul Islam, Devin K. Binder, and B. Hyle Park
Biomed. Opt. Express 3(11) 2700-2706 (2012)

Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography

Peijun Tang, Yuandong Li, Adiya Rakymzhan, Zhiying Xie, and Ruikang K. Wang
Biomed. Opt. Express 11(2) 699-710 (2020)

References

  • View by:
  • |
  • |
  • |

  1. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
    [Crossref] [PubMed]
  2. D. N. Lenkov, A. B. Volnova, A. R. D. Pope, and V. Tsytsarev, “Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models,” J. Neurosci. Methods 212(2), 195–202 (2013).
    [Crossref] [PubMed]
  3. S. A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging,” Psychophysiology 40(4), 529–541 (2003).
    [Crossref] [PubMed]
  4. P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods 18(2), 91–103 (1999).
    [Crossref] [PubMed]
  5. S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17(5), 499–503 (2006).
    [Crossref] [PubMed]
  6. P. Federico, S. G. Borg, A. G. Salkauskus, and B. A. MacVicar, “Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig,” Neuroscience 58(3), 461–480 (1994).
    [Crossref] [PubMed]
  7. D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage 26(2), 619–627 (2005).
    [Crossref] [PubMed]
  8. M. R. Hajihashemi, T. Zhang, B. K. Ormerod, and H. Jiang, “Non-invasive detection of optical changes elicited by seizure activity using time-series analysis of light scattering images in a rat model of generalized seizure,” J. Neurosci. Methods 227, 18–28 (2014).
    [Crossref] [PubMed]
  9. J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51(16), 3461–3469 (2012).
    [Crossref] [PubMed]
  10. T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
    [PubMed]
  11. J. R. Weber, M. Hsu, A. Lin, D. Lee, C. Owen, D. K. Binder, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of seizures using multispectral spatial frequency domain imaging,” in OSA BIOMED (2010).
  12. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  13. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  15. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
    [Crossref] [PubMed]
  16. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
    [Crossref]
  17. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref] [PubMed]
  18. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  19. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
    [Crossref] [PubMed]
  20. M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
    [PubMed]
  21. B. W. Graf, T. S. Ralston, H. J. Ko, and S. A. Boppart, “Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging,” Opt. Express 17(16), 13447–13457 (2009).
    [PubMed]
  22. S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
    [Crossref] [PubMed]
  23. U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
    [Crossref] [PubMed]
  24. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
    [Crossref] [PubMed]
  25. M. Sato, D. Nomura, T. Tsunenari, and I. Nishidate, “In vivo rat brain measurements of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography,” Appl. Opt. 49(30), 5686–5696 (2010).
    [Crossref] [PubMed]
  26. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
    [PubMed]
  27. V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
    [Crossref] [PubMed]
  28. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28(14), 1218–1220 (2003).
    [Crossref] [PubMed]
  29. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
    [Crossref] [PubMed]
  30. S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
    [Crossref] [PubMed]
  31. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2013).
    [PubMed]
  32. J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
    [PubMed]
  33. D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
    [Crossref] [PubMed]
  34. C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
    [Crossref] [PubMed]
  35. M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci. 29(9), 2814–2823 (2009).
    [Crossref] [PubMed]
  36. M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
    [Crossref] [PubMed]
  37. Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express 20(14), 14797–14813 (2012).
    [Crossref] [PubMed]
  38. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
    [Crossref] [PubMed]

2014 (3)

M. R. Hajihashemi, T. Zhang, B. K. Ormerod, and H. Jiang, “Non-invasive detection of optical changes elicited by seizure activity using time-series analysis of light scattering images in a rat model of generalized seizure,” J. Neurosci. Methods 227, 18–28 (2014).
[Crossref] [PubMed]

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

2013 (3)

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2013).
[PubMed]

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

D. N. Lenkov, A. B. Volnova, A. R. D. Pope, and V. Tsytsarev, “Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models,” J. Neurosci. Methods 212(2), 195–202 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

B. W. Graf, T. S. Ralston, H. J. Ko, and S. A. Boppart, “Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging,” Opt. Express 17(16), 13447–13457 (2009).
[PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci. 29(9), 2814–2823 (2009).
[Crossref] [PubMed]

2007 (3)

U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

2006 (2)

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17(5), 499–503 (2006).
[Crossref] [PubMed]

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

2005 (2)

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage 26(2), 619–627 (2005).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

2004 (4)

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
[PubMed]

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
[Crossref] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

2003 (6)

1999 (2)

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods 18(2), 91–103 (1999).
[Crossref] [PubMed]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

1996 (1)

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
[Crossref] [PubMed]

1994 (1)

P. Federico, S. G. Borg, A. G. Salkauskus, and B. A. MacVicar, “Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig,” Neuroscience 58(3), 461–480 (1994).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Aitken, P. G.

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods 18(2), 91–103 (1999).
[Crossref] [PubMed]

Bahar, S.

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17(5), 499–503 (2006).
[Crossref] [PubMed]

Bajraszewski, T.

Baker, K. B.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

Binder, D. K.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[PubMed]

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
[Crossref] [PubMed]

Bizheva, K.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Boas, D. A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Boppart, S. A.

B. W. Graf, T. S. Ralston, H. J. Ko, and S. A. Boppart, “Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging,” Opt. Express 17(16), 13447–13457 (2009).
[PubMed]

S. A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging,” Psychophysiology 40(4), 529–541 (2003).
[Crossref] [PubMed]

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28(14), 1218–1220 (2003).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
[Crossref] [PubMed]

Borg, S. G.

P. Federico, S. G. Borg, A. G. Salkauskus, and B. A. MacVicar, “Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig,” Neuroscience 58(3), 461–480 (1994).
[Crossref] [PubMed]

Bouma, B.

Bouma, B. E.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
[Crossref] [PubMed]

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
[Crossref] [PubMed]

Carney, P. R.

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

Carter, K. M.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage 26(2), 619–627 (2005).
[Crossref] [PubMed]

Cense, B.

Chahlavi, A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Choma, M.

Cowey, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

de Boer, J.

de Boer, J. F.

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Drexler, W.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

Eberle, M. M.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[PubMed]

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

Fayuk, D.

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods 18(2), 91–103 (1999).
[Crossref] [PubMed]

Federico, P.

P. Federico, S. G. Borg, A. G. Salkauskus, and B. A. MacVicar, “Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig,” Neuroscience 58(3), 461–480 (1994).
[Crossref] [PubMed]

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

George, J. S.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage 26(2), 619–627 (2005).
[Crossref] [PubMed]

Gillette, R.

Graf, B. W.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hajihashemi, M. R.

M. R. Hajihashemi, T. Zhang, B. K. Ormerod, and H. Jiang, “Non-invasive detection of optical changes elicited by seizure activity using time-series analysis of light scattering images in a rat model of generalized seizure,” J. Neurosci. Methods 227, 18–28 (2014).
[Crossref] [PubMed]

Hansen, A. M.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

Holzwarth, R.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Hsu, M. S.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[PubMed]

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

Huang, D.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Islam, M. S.

Izatt, J.

Jeon, S. W.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

Jiang, H.

M. R. Hajihashemi, T. Zhang, B. K. Ormerod, and H. Jiang, “Non-invasive detection of optical changes elicited by seizure activity using time-series analysis of light scattering images in a rat model of generalized seizure,” J. Neurosci. Methods 227, 18–28 (2014).
[Crossref] [PubMed]

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51(16), 3461–3469 (2012).
[Crossref] [PubMed]

Jiang, R.

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Ko, H. J.

Lazebnik, M.

Le, T.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

Leitgeb, R.

Lemij, H. G.

Lenkov, D. N.

D. N. Lenkov, A. B. Volnova, A. R. D. Pope, and V. Tsytsarev, “Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models,” J. Neurosci. Methods 212(2), 195–202 (2013).
[Crossref] [PubMed]

Li, L.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ma, H.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci. 29(9), 2814–2823 (2009).
[Crossref] [PubMed]

Ma, T.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
[Crossref] [PubMed]

MacVicar, B. A.

P. Federico, S. G. Borg, A. G. Salkauskus, and B. A. MacVicar, “Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig,” Neuroscience 58(3), 461–480 (1994).
[Crossref] [PubMed]

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Manley, G. T.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
[Crossref] [PubMed]

Marks, D. L.

Maslov, K. I.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Mei, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Mo, J.

Morgan, J. E.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

Nguyen, J.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

Nishidate, I.

Nishimura, N.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

Nomura, D.

Oh, C. M.

Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express 20(14), 14797–14813 (2012).
[Crossref] [PubMed]

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

Oliveira, M. C.

Ooi, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
[PubMed]

Ormerod, B. K.

M. R. Hajihashemi, T. Zhang, B. K. Ormerod, and H. Jiang, “Non-invasive detection of optical changes elicited by seizure activity using time-series analysis of light scattering images in a rat model of generalized seizure,” J. Neurosci. Methods 227, 18–28 (2014).
[Crossref] [PubMed]

Ortega, A.

Oshio, K.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
[Crossref] [PubMed]

Park, B.

Park, B. H.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[PubMed]

Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express 20(14), 14797–14813 (2012).
[Crossref] [PubMed]

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Pierce, M. C.

Pope, A. R. D.

D. N. Lenkov, A. B. Volnova, A. R. D. Pope, and V. Tsytsarev, “Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models,” J. Neurosci. Methods 212(2), 195–202 (2013).
[Crossref] [PubMed]

Potgieter, K.

Povazay, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rajagopalan, U. M.

Ralston, T. S.

Rao, B.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Rector, D. M.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage 26(2), 619–627 (2005).
[Crossref] [PubMed]

Reitsamer, H. A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Reynolds, C. L.

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[PubMed]

Rezai, A. R.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

Rodriguez, C. L. R.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

Rollins, A. M.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Salkauskus, A. G.

P. Federico, S. G. Borg, A. G. Salkauskus, and B. A. MacVicar, “Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig,” Neuroscience 58(3), 461–480 (1994).
[Crossref] [PubMed]

Sarunic, M.

Sato, M.

Satomura, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
[PubMed]

Sattmann, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Schaffer, C. B.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwartz, T. H.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci. 29(9), 2814–2823 (2009).
[Crossref] [PubMed]

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17(5), 499–503 (2006).
[Crossref] [PubMed]

Seiyama, A.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
[PubMed]

Seki, J.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
[PubMed]

Shure, M. A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

Somjen, G. G.

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods 18(2), 91–103 (1999).
[Crossref] [PubMed]

Stingl, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suh, M.

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci. 29(9), 2814–2823 (2009).
[Crossref] [PubMed]

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17(5), 499–503 (2006).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szu, J. I.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[PubMed]

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Tanifuji, M.

U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
[Crossref] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
[Crossref] [PubMed]

Tsunenari, T.

Tsytsarev, V.

D. N. Lenkov, A. B. Volnova, A. R. D. Pope, and V. Tsytsarev, “Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models,” J. Neurosci. Methods 212(2), 195–202 (2013).
[Crossref] [PubMed]

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Turner, D. A.

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods 18(2), 91–103 (1999).
[Crossref] [PubMed]

Unterhuber, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

Verkman, A. S.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
[Crossref] [PubMed]

Vermeer, K. A.

Volegov, P. L.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage 26(2), 619–627 (2005).
[Crossref] [PubMed]

Volnova, A. B.

D. N. Lenkov, A. B. Volnova, A. R. D. Pope, and V. Tsytsarev, “Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models,” J. Neurosci. Methods 212(2), 195–202 (2013).
[Crossref] [PubMed]

Wang, L. V.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Wang, Y.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[PubMed]

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express 20(14), 14797–14813 (2012).
[Crossref] [PubMed]

Weda, J. J. A.

Yanagida, T.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
[PubMed]

Yang, C.

Yang, H.

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51(16), 3461–3469 (2012).
[Crossref] [PubMed]

Yang, J.

Yun, S.

Yun, S. H.

Zhang, T.

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

M. R. Hajihashemi, T. Zhang, B. K. Ormerod, and H. Jiang, “Non-invasive detection of optical changes elicited by seizure activity using time-series analysis of light scattering images in a rat model of generalized seizure,” J. Neurosci. Methods 227, 18–28 (2014).
[Crossref] [PubMed]

J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51(16), 3461–3469 (2012).
[Crossref] [PubMed]

Zhao, M.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci. 29(9), 2814–2823 (2009).
[Crossref] [PubMed]

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17(5), 499–503 (2006).
[Crossref] [PubMed]

Zhou, J.

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (2)

Clin. Hemorheol. Microcirc. (1)

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

J. Biomed. Opt. (3)

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

J. Neurosci. (2)

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci. 29(9), 2814–2823 (2009).
[Crossref] [PubMed]

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).
[Crossref] [PubMed]

J. Neurosci. Methods (7)

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods 70(1), 65–72 (1996).
[Crossref] [PubMed]

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[Crossref] [PubMed]

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

D. N. Lenkov, A. B. Volnova, A. R. D. Pope, and V. Tsytsarev, “Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models,” J. Neurosci. Methods 212(2), 195–202 (2013).
[Crossref] [PubMed]

M. R. Hajihashemi, T. Zhang, B. K. Ormerod, and H. Jiang, “Non-invasive detection of optical changes elicited by seizure activity using time-series analysis of light scattering images in a rat model of generalized seizure,” J. Neurosci. Methods 227, 18–28 (2014).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

J. Vis. Exp. (1)

J. I. Szu, M. M. Eberle, C. L. Reynolds, M. S. Hsu, Y. Wang, C. M. Oh, M. S. Islam, B. H. Park, and D. K. Binder, “Thinned-skull cortical window technique for in vivo optical coherence tomography imaging,” J. Vis. Exp. 69, e50053 (2012).
[PubMed]

Methods (1)

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods 18(2), 91–103 (1999).
[Crossref] [PubMed]

Neuroimage (1)

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage 26(2), 619–627 (2005).
[Crossref] [PubMed]

Neurophotonics (1)

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref] [PubMed]

Neuroreport (2)

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport 15(2), 259–262 (2004).
[Crossref] [PubMed]

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17(5), 499–503 (2006).
[Crossref] [PubMed]

Neuroscience (1)

P. Federico, S. G. Borg, A. G. Salkauskus, and B. A. MacVicar, “Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig,” Neuroscience 58(3), 461–480 (1994).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Psychophysiology (1)

S. A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging,” Psychophysiology 40(4), 529–541 (2003).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Zhang, J. Zhou, R. Jiang, H. Yang, P. R. Carney, and H. Jiang, “Pre-seizure state identified by diffuse optical tomography,” Sci. Rep. 4, 3798 (2014).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

J. R. Weber, M. Hsu, A. Lin, D. Lee, C. Owen, D. K. Binder, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of seizures using multispectral spatial frequency domain imaging,” in OSA BIOMED (2010).

Supplementary Material (6)

» Media 1: AVI (16056 KB)     
» Media 2: AVI (8452 KB)     
» Media 3: AVI (16056 KB)     
» Media 4: AVI (8452 KB)     
» Media 5: AVI (16213 KB)     
» Media 6: AVI (16901 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic of the SD-OCT system. SLD: superluminescent diode, lsc: line scan camera, gm: galvanometer, gr: grating. Graph inset is the spectrometer roll-off demonstrating an 11 dB loss over the maximum imaging depth.
Fig. 2
Fig. 2 Intensity (left) and the corresponding attenuation coefficient (right) sagittal image of mouse brain tissue. Color bar represents µ in units of mm−1. S: skull, CTX: cerebral cortex and CC: corpus callosum. Bar: 1mm
Fig. 3
Fig. 3 Percent change in average intensity for (A) Global and (B) Focal controls 0.5 x 0.5 x 0.5 mm ROIs. Global ROIs are separated 1 mm laterally outlined on the en face intensity image. Focal ROIs are located at the injection site (ROI 2) and 2 mm from the injection site (ROI 1) outlined on the en face intensity image. Arrows represent time of injection. Red horizontal bars: 2SD of the baseline mean. En face insets of a reference intensity volume. Top of image: Bregma, left of image: Rostral.
Fig. 4
Fig. 4 Volumes of change in intensity for the global seizure model. Volumes are 4 x 2 x 2 mm. Color bar: percent change from baseline (0%) saturating at ± 50%. Time is min post-PTZ injection. Top of image: Bregma, left of image: Rostral. Scale bar: 1 mm. (see Media 1).
Fig. 5
Fig. 5 Volumes of change in intensity for the focal seizure model. Volumes are 3 x 3 x 2 mm. Location of pipette injections is outlined in the first frame. Color bar: percent change from baseline (0%) saturating at ± 50%. Time is min post 4-AP injections. Top of image: Bregma, left of image: Rostral. Scale bar: 1 mm. (see Media 2).
Fig. 6
Fig. 6 Global (A) and focal (B) seizure ROI analysis with the location of ROIs within the imaged volume and the intensity percent change plotted vs. time (A) post-PTZ and (B) post 4-AP injections along with each baseline 2SD as red, dashed, horizontal lines. (A) The first arrow is the time of PTZ injection the second is the anesthesia overdose. (B) Arrow is time of last 4-AP injection. The vertical dashed lines indicate stage-2 (green) and stage-5 (blue) seizures respectively. All ROIs are 0.5 x 0.5 x 0.5 mm.
Fig. 7
Fig. 7 Percent change in average attenuation for (A) Global and (B) Focal controls 0.5 x 0.5 x 0.5 mm ROIs. Global ROIs are separated 1 mm laterally. Focal ROIs are located at the injection site (solid gray) and 2 mm from the injection site (dashed black). Arrows represent time of injection. Red horizontal bars: 2SD of the baseline mean.
Fig. 8
Fig. 8 Histograms of the attenuation value distribution in three layers of the cortical tissue in a global model experiment for baseline (Left) and post seizure onset (Right). The black line is the baseline attenuation values that formed the 0.95 confidence level. Layer (A) top 65 μm, layer (B) following 52 μm, and layer (C) following 130 μm.
Fig. 9
Fig. 9 Histograms of the attenuation value distribution in three layers of the cortical tissue in a focal model experiment for baseline (Left) and post seizure onset (Right). The black line is the baseline attenuation values that formed the 0.90 confidence level. Layer (A) top 65 μm, layer (B) following 52 μm, and layer (C) following 130 μm.
Fig. 10
Fig. 10 fOCT volumes of the global seizure 4 x 2 x 2 mm. Color is scaled from black to color saturation at −80% Δµ for blue and 80% Δµ for red representing decreased and increased Δµ respectively. fOCT volumes are combined with corresponding attenuation coefficient volumes. Time is min post PTZ injection. Top of image: Bregma, left of image: Rostral. Bar: 1 mm. (see Media 3).
Fig. 11
Fig. 11 fOCT volumes of the focal seizure 3 x 3 x 2 mm. Color is scaled from black to color saturation at −50% Δµ for blue and 80% Δµ for red representing decreased and increased Δµ respectively. fOCT volumes are combined with corresponding attenuation volumes. Time is min post 4-AP injections. Left-back of image: Rostral, right-back of image: Bregma. Dashed line in first frame indicates location of injection pipette. Bar: 1 mm. (see Media 4).
Fig. 12
Fig. 12 fOCT volume 30 min. post 4-AP injections showing 0.2 x 0.2 x 0.2 mm ROIs for three regions exhibiting increasing (solid), no change (dotted), and decreasing (dashed) Δµ plotted vs. time through focal seizure progression. Error bars are standard error.
Fig. 13
Fig. 13 fOCT volumes of focal seizure 5 x 4 x 2 mm. Color is scaled from black to color saturation at −30% Δµ for blue and 30% Δµ for red representing decreased and increased Δµ respectively. fOCT volumes are combined with corresponding attenuation volumes. Time is min post 4-AP injections. Dashed line in frame one indicates location of injection pipette. Right back of image: Bregma, front of image: Rostral Bar: 1 mm. (see Media 5).
Fig. 14
Fig. 14 MIP layered fOCT data minutes post 4-AP injections. Layer (A) top 65 μm, layer (B) following 52 μm, and layer (C) following 130 μm. Dashed line in frame one of each layer indicates location of injection pipette. Color spans from white to color saturation at ± 30% Bar: 1mm. (see Media 6).
Fig. 15
Fig. 15 Consecutive ROIs of average Δµ in front of and lateral of the site of 4-AP injections. Six 0.5 x 0.5 mm ROIs (a-f) were averaged for three layers (A-C). The letter next to the ROI in the top frame refers to the plot with the corresponding letter plotted vs. time post 4-AP injections. Layer A (Red line in plots): top 65 μm, layer B (Black line in plots): following 52 μm, and layer C (Blue line in plots): following 130 μm. Dashed line in each layer indicates location of pipette. MIPs are of the fOCT volume 45 min post injections.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C.I.= x ¯ ± t * SE, SE=s/ n
Δμ=100×  ( x ¯ (x,y,z,t)C I max,min (x,y,z) ) C I max,min (x,y,z)

Metrics