Abstract

Fractional photothermolysis uses lasers to generate a pattern of microscopic columnar thermal lesions within the skin stimulating collagen remodeling. In this paper we investigate the use of Bessel beams as an alternative to conventional Gaussian beams in creating laser photothermal lesions of different aspect ratios in skin. We show for the first time the improved photothermal lesion depth-to-diameter aspect ratio using Bessel beams in ex vivo human skin as well as in numerical simulations using electric field Monte Carlo photon transport, finite difference methods and Arrhenius model. Bessel beams allow the creation of deep and narrow thermal lesions necessary for improved efficacy in fractional photothermolysis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography

Meng-Tsan Tsai, Chih-Hsun Yang, Su-Chin Shen, Ya-Ju Lee, Feng-Yu Chang, and Cheng-Shin Feng
Biomed. Opt. Express 4(11) 2362-2375 (2013)

Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography

Chih-Hsun Yang, Meng-Tsan Tsai, Su-Chin Shen, Chau Yee Ng, and Shih-Ming Jung
Biomed. Opt. Express 5(11) 3949-3959 (2014)

Photothermal lesions in soft tissue induced by optical fiber microheaters

Reinher Pimentel-Domínguez, Paola Moreno-Álvarez, Mathieu Hautefeuille, Anahí Chavarría, and Juan Hernández-Cordero
Biomed. Opt. Express 7(4) 1138-1148 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Rinaldi, “Laser: a review,” Clin. Dermatol. 26(6), 590–601 (2008).
    [Crossref] [PubMed]
  2. V. V. Tuchin, “Laser light scattering in biomedical diagnostics and therapy,” J. Laser Appl. 5(2), 43–60 (1993).
    [Crossref] [PubMed]
  3. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
    [Crossref] [PubMed]
  4. Z. Zhao and P. W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths,” Proc. SPIE 3254, 354–360 (1998).
    [Crossref]
  5. E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
    [Crossref] [PubMed]
  6. D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
    [Crossref] [PubMed]
  7. R. G. Geronemus, “Fractional photothermolysis: current and future applications,” Lasers Surg. Med. 38(3), 169–176 (2006).
    [Crossref] [PubMed]
  8. D. J. Goldberg, “New collagen formation after dermal remodeling with an intense pulsed light source,” J. Cutan. Laser Ther. 2(2), 59–61 (2000).
    [Crossref] [PubMed]
  9. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31(15), 2708–2713 (1992).
    [Crossref] [PubMed]
  10. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
    [Crossref]
  11. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6(1), 150–152 (1989).
    [Crossref]
  12. A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).
    [Crossref] [PubMed]
  13. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  14. J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
    [Crossref] [PubMed]
  15. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 04(01), 9–38 (2011).
    [Crossref]
  16. J. A. Pearce, “Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose,” Proc. SPIE 7181, 718104 (2009).
    [Crossref]
  17. S. A. Sapareto, “The biology of hyperthermia in vitro,” in Physical Aspects of Hyperthermia, Nussbaum, ed. (1982).

2015 (1)

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).
[Crossref] [PubMed]

2011 (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

2009 (1)

J. A. Pearce, “Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose,” Proc. SPIE 7181, 718104 (2009).
[Crossref]

2008 (1)

F. Rinaldi, “Laser: a review,” Clin. Dermatol. 26(6), 590–601 (2008).
[Crossref] [PubMed]

2006 (2)

R. G. Geronemus, “Fractional photothermolysis: current and future applications,” Lasers Surg. Med. 38(3), 169–176 (2006).
[Crossref] [PubMed]

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

2004 (1)

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

2003 (1)

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

2000 (2)

D. J. Goldberg, “New collagen formation after dermal remodeling with an intense pulsed light source,” J. Cutan. Laser Ther. 2(2), 59–61 (2000).
[Crossref] [PubMed]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

1998 (1)

Z. Zhao and P. W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths,” Proc. SPIE 3254, 354–360 (1998).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1993 (1)

V. V. Tuchin, “Laser light scattering in biomedical diagnostics and therapy,” J. Laser Appl. 5(2), 43–60 (1993).
[Crossref] [PubMed]

1992 (1)

1989 (1)

1983 (1)

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

Anderson, R. R.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

Arlt, J.

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

Brandes, A.

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).
[Crossref] [PubMed]

Brown, D. L.

Chen, W. R.

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

Chen, Y.

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

Crochet, J. J.

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

Dholakia, K.

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Eberly, J. H.

Elmaklizi, A.

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).
[Crossref] [PubMed]

Fairchild, P. W.

Z. Zhao and P. W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths,” Proc. SPIE 3254, 354–360 (1998).
[Crossref]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

Geronemus, R. G.

R. G. Geronemus, “Fractional photothermolysis: current and future applications,” Lasers Surg. Med. 38(3), 169–176 (2006).
[Crossref] [PubMed]

Gnyawali, S. C.

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

Goldberg, D. J.

D. J. Goldberg, “New collagen formation after dermal remodeling with an intense pulsed light source,” J. Cutan. Laser Ther. 2(2), 59–61 (2000).
[Crossref] [PubMed]

Herron, G. S.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Huang, H.

Indebetouw, G.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Katsambas, A.

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

Kienle, A.

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).
[Crossref] [PubMed]

Lemley, E. C.

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

Lin, Y.

Manstein, D.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Papadavid, E.

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

Pearce, J. A.

J. A. Pearce, “Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose,” Proc. SPIE 7181, 718104 (2009).
[Crossref]

Reitzle, D.

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).
[Crossref] [PubMed]

Rinaldi, F.

F. Rinaldi, “Laser: a review,” Clin. Dermatol. 26(6), 590–601 (2008).
[Crossref] [PubMed]

Seka, W.

Sink, R. K.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Tanner, H.

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

V. V. Tuchin, “Laser light scattering in biomedical diagnostics and therapy,” J. Laser Appl. 5(2), 43–60 (1993).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, L. V.

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao and P. W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths,” Proc. SPIE 3254, 354–360 (1998).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Appl. Opt. (1)

Clin. Dermatol. (1)

F. Rinaldi, “Laser: a review,” Clin. Dermatol. 26(6), 590–601 (2008).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Int. J. Dermatol. (1)

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

J. J. Crochet, S. C. Gnyawali, Y. Chen, E. C. Lemley, L. V. Wang, and W. R. Chen, “Temperature distribution in selective laser-tissue interaction,” J. Biomed. Opt. 11(3), 034031 (2006).
[Crossref] [PubMed]

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).
[Crossref] [PubMed]

J. Cutan. Laser Ther. (1)

D. J. Goldberg, “New collagen formation after dermal remodeling with an intense pulsed light source,” J. Cutan. Laser Ther. 2(2), 59–61 (2000).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

J. Laser Appl. (1)

V. V. Tuchin, “Laser light scattering in biomedical diagnostics and therapy,” J. Laser Appl. 5(2), 43–60 (1993).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (2)

D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med. 34(5), 426–438 (2004).
[Crossref] [PubMed]

R. G. Geronemus, “Fractional photothermolysis: current and future applications,” Lasers Surg. Med. 38(3), 169–176 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Proc. SPIE (2)

Z. Zhao and P. W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths,” Proc. SPIE 3254, 354–360 (1998).
[Crossref]

J. A. Pearce, “Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose,” Proc. SPIE 7181, 718104 (2009).
[Crossref]

Science (1)

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

Other (1)

S. A. Sapareto, “The biology of hyperthermia in vitro,” in Physical Aspects of Hyperthermia, Nussbaum, ed. (1982).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (786 KB)      Typical skin thermal map in pseudocolor

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A: Schematic diagram of a cross-section of the three-dimensional model used in the Monte Carlo simulations comprising a three-layer skin model and an optical element. B: A typical numerical photon absorption map. C: A typical skin thermal map in pseudocolor (see Visualization 1). The iso-damage (10%) contour is also shown as dotted green line. Scale bar is 50 µm for all images.
Fig. 2
Fig. 2 NBTC-stained histological sections of ex vivo skin showing typical photothermal lesions (region bounded by red dotted lines) created using a Bessel beam at 11-, 16-, 31- and 47-mJ, from A to D, respectively. Scale bar is 100 µm for all images.
Fig. 3
Fig. 3 NBTC-stained histological sections of ex vivo skin showing photothermal lesions (region bounded by red dotted lines) created using a Bessel beam (left) and a Gaussian beam (right) with equivalent incident beam waist, pulse energy at 31 mJ and pulse duration of 20 ms. Scale bar is 100 µm for both images.
Fig. 4
Fig. 4 A: Average Bessel-generated lesion diameter (blue filled squares) and depth (red filled circles) for different laser energies measured from skin histological sections. Shown also lesion diameter (blue hollow squares) and depth (red hollow circles) derived from numerical simulation results, and the curve fit lines. B: Calculated depth-to-diameter aspect ratio from histological measurements (filled triangles) and numerical result measurements (hollow triangles) as a function of laser energy.
Fig. 5
Fig. 5 A: Average Gaussian beam-generated lesion diameter (blue filled squares) and depth (red filled circles) for different laser energies measured from skin histological sections. The best curve fit is also shown (solid lines). B: Calculated depth-to-diameter aspect ratio from histological measurements (squares) as a function of laser energy.

Tables (2)

Tables Icon

Table 1 Optical properties of skin model layers at 1435 nm [15].

Tables Icon

Table 2 Skin thermal constants used in the numerical simulation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Intensit y u = | ju W j cos( ϕ j )+i( ju W j sin( ϕ j )  )  | 2
ϕ 0,j = 2π n axicon λ ( R axicon R j )tan α axicon

Metrics