Abstract

We propose a simple and robust procedure for Fourier domain optical coherence tomography (FdOCT) that allows to linearize the detected FdOCT spectra to wavenumber domain and, at the same time, to determine the wavelength of light for each point of detected spectrum. We show that in this approach it is possible to use any measurable physical quantity that has linear dependency on wavenumber and can be extracted from spectral fringes. The actual values of the measured quantity have no importance for the algorithm and do not need to be known at any stage of the procedure. As example we calibrate a spectral OCT spectrometer using Doppler frequency. The technique of spectral calibration can be in principle adapted to of all kind of Fourier domain OCT devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography

Néstor Uribe-Patarroyo, Sahar Hosseinzadeh Kassani, Martin Villiger, and Brett E. Bouma
Opt. Express 26(7) 9081-9094 (2018)

Compressive sensing with dispersion compensation on non-linear wavenumber sampled spectral domain optical coherence tomography

Daguang Xu, Yong Huang, and Jin U. Kang
Biomed. Opt. Express 4(9) 1519-1532 (2013)

Performance of fourier domain vs. time domain optical coherence tomography

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher
Opt. Express 11(8) 889-894 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  2. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  3. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref] [PubMed]
  4. T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: Snapshot retinal imaging at 6.7 million axial-scans per second,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine Xvi 8213 (2012).
  5. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [Crossref] [PubMed]
  6. F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20(1), 385–396 (2012).
    [Crossref] [PubMed]
  7. R. K. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
    [Crossref] [PubMed]
  8. V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl, R. A. Leitgeb, and R. M. Werkmeister, “Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes,” Biomed. Opt. Express 5(2), 630–642 (2014).
    [Crossref] [PubMed]
  9. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
    [Crossref] [PubMed]
  10. D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005).
    [Crossref] [PubMed]
  11. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  12. B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express 3(12), 3138–3152 (2012).
    [Crossref] [PubMed]
  13. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
    [Crossref] [PubMed]
  14. V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
    [Crossref]
  15. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [Crossref] [PubMed]
  16. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [Crossref] [PubMed]
  17. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [Crossref] [PubMed]
  18. S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18(10), 10446–10461 (2010).
    [Crossref] [PubMed]
  19. K. Wang and Z. H. Ding, “Spectral calibration in spectral domain optical coherence tomography,” Chin. Opt. Lett. 6(12), 902–904 (2008).
    [Crossref]
  20. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
    [Crossref] [PubMed]
  21. D. J. Faber and T. G. van Leeuwen, “Doppler calibration method for Spectral Domain OCT spectrometers,” J. Biophotonics 2(6-7), 407–415 (2009).
    [Crossref] [PubMed]
  22. D. Piao, L. L. Otis, and Q. Zhu, “Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28(13), 1120–1122 (2003).
    [Crossref] [PubMed]
  23. S. G. Proskurin, Y. He, and R. K. Wang, “Determination of flow velocity and spectrum broadening with vector based on Doppler shift optical coherence tomography,” Opt. Lett. 28, 1227–1229 (2003).
    [Crossref] [PubMed]
  24. A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express 21(15), 17711–17729 (2013).
    [Crossref] [PubMed]
  25. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  26. M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
    [Crossref]
  27. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
    [Crossref] [PubMed]
  28. X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, and J. L. Liao, “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52, 063603 (2013).
  29. T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16(3), 030501 (2011).
    [Crossref] [PubMed]
  30. A. K. Gaigalas, L. Wang, H. J. He, and P. DeRose, “Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
    [Crossref] [PubMed]
  31. C. Ding, P. Bu, X. Z. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
    [Crossref]
  32. J. H. Kim, J. H. Han, and J. Jeong, “Accurate Wavelength Calibration Method for Spectrometer Using Low Coherence Interferometry,” J. Lightwave Technol. 33(16), 3413–3418 (2015).
    [Crossref]
  33. J. H. Kim, J. H. Han, and J. Jeong, “Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer,” Opt. Commun. 367, 186–191 (2016).
    [Crossref]
  34. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [Crossref] [PubMed]
  35. M. Szkulmowski, S. Tamborski, and M. Wojtkowski, “Wavelength to pixel calibration for FdOCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine Xix 9312 (2015).
  36. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [Crossref] [PubMed]
  37. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(16), 14281–14297 (2009).
    [Crossref] [PubMed]
  38. M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
    [Crossref] [PubMed]

2016 (1)

J. H. Kim, J. H. Han, and J. Jeong, “Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer,” Opt. Commun. 367, 186–191 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (3)

2012 (2)

2011 (2)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16(3), 030501 (2011).
[Crossref] [PubMed]

2010 (4)

C. Ding, P. Bu, X. Z. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
[Crossref]

S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18(10), 10446–10461 (2010).
[Crossref] [PubMed]

R. K. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
[Crossref] [PubMed]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[Crossref] [PubMed]

2009 (6)

2008 (6)

2007 (2)

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
[Crossref] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

2005 (4)

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005).
[Crossref] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

2003 (2)

2000 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Aalders, M. C.

Ahn, Y. C.

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16(3), 030501 (2011).
[Crossref] [PubMed]

Bajraszewski, T.

Bian, H. Y.

X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, and J. L. Liao, “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52, 063603 (2013).

Biedermann, B. R.

Bolmont, T.

Bouma, B.

Bouwens, A.

Bu, P.

C. Ding, P. Bu, X. Z. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
[Crossref]

Cable, A.

Cense, B.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

Chen, C. L.

X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, and J. L. Liao, “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52, 063603 (2013).

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16(3), 030501 (2011).
[Crossref] [PubMed]

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

de Boer, J.

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

DeRose, P.

A. K. Gaigalas, L. Wang, H. J. He, and P. DeRose, “Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref] [PubMed]

Ding, C.

C. Ding, P. Bu, X. Z. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
[Crossref]

Ding, Z. H.

Doblhoff-Dier, V.

Eigenwillig, C. M.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Eom, T. J.

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16(3), 030501 (2011).
[Crossref] [PubMed]

Faber, D. J.

Fabritius, T.

Fercher, A. F.

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Fujimoto, J. G.

Gaigalas, A. K.

A. K. Gaigalas, L. Wang, H. J. He, and P. DeRose, “Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref] [PubMed]

Gao, W. R.

X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, and J. L. Liao, “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52, 063603 (2013).

Garhöfer, G.

Gelikonov, G. V.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[Crossref]

Gelikonov, V. M.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[Crossref]

Gora, M.

Gorczynska, I.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Gröschl, M.

Grulkowski, I.

Han, J. H.

J. H. Kim, J. H. Han, and J. Jeong, “Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer,” Opt. Commun. 367, 186–191 (2016).
[Crossref]

J. H. Kim, J. H. Han, and J. Jeong, “Accurate Wavelength Calibration Method for Spectrometer Using Low Coherence Interferometry,” J. Lightwave Technol. 33(16), 3413–3418 (2015).
[Crossref]

He, H. J.

A. K. Gaigalas, L. Wang, H. J. He, and P. DeRose, “Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref] [PubMed]

He, Y.

Hitzenberger, C. K.

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Hu, Z.

Huber, R.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Jaillon, F.

Jeong, J.

J. H. Kim, J. H. Han, and J. Jeong, “Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer,” Opt. Commun. 367, 186–191 (2016).
[Crossref]

J. H. Kim, J. H. Han, and J. Jeong, “Accurate Wavelength Calibration Method for Spectrometer Using Low Coherence Interferometry,” J. Lightwave Technol. 33(16), 3413–3418 (2015).
[Crossref]

Jiang, J.

Kaluzny, B. J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Karnowski, K.

Kennedy, B. F.

Kennedy, K. M.

Kim, C. S.

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16(3), 030501 (2011).
[Crossref] [PubMed]

Kim, J. H.

J. H. Kim, J. H. Han, and J. Jeong, “Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer,” Opt. Commun. 367, 186–191 (2016).
[Crossref]

J. H. Kim, J. H. Han, and J. Jeong, “Accurate Wavelength Calibration Method for Spectrometer Using Low Coherence Interferometry,” J. Lightwave Technol. 33(16), 3413–3418 (2015).
[Crossref]

Kowalczyk, A.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[Crossref] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(16), 14281–14297 (2009).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[Crossref] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[Crossref] [PubMed]

Lamouche, G.

Lasser, T.

Leitgeb, R.

Leitgeb, R. A.

Lévesque, D.

Liao, J. L.

X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, and J. L. Liao, “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52, 063603 (2013).

Makita, S.

Mik, E. G.

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

Otis, L. L.

Palte, G.

Park, B.

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

Piao, D.

Pierce, M. C.

Potsaid, B.

Proskurin, S. G.

Radzewicz, C.

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Rollins, A. M.

Sampson, D. D.

Sasaki, O.

C. Ding, P. Bu, X. Z. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
[Crossref]

Schmetterer, L.

Shilyagin, P. A.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[Crossref]

Srinivasan, V. J.

Sticker, M.

Szkulmowska, A.

Szkulmowski, M.

A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express 21(15), 17711–17729 (2013).
[Crossref] [PubMed]

M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
[Crossref] [PubMed]

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express 3(12), 3138–3152 (2012).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(16), 14281–14297 (2009).
[Crossref] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[Crossref] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[Crossref] [PubMed]

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

Szlag, D.

Targowski, P.

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

Tearney, G.

van Leeuwen, T. G.

Vergnole, S.

Vilser, W.

Wang, K.

Wang, L.

A. K. Gaigalas, L. Wang, H. J. He, and P. DeRose, “Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref] [PubMed]

Wang, R. K.

Wang, R. K. K.

R. K. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
[Crossref] [PubMed]

Wang, X. Z.

C. Ding, P. Bu, X. Z. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
[Crossref]

Wasilewski, W.

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Werkmeister, R. M.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Wojtkowski, A.

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

Wojtkowski, M.

A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express 21(15), 17711–17729 (2013).
[Crossref] [PubMed]

M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
[Crossref] [PubMed]

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express 3(12), 3138–3152 (2012).
[Crossref] [PubMed]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[Crossref] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(16), 14281–14297 (2009).
[Crossref] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[Crossref] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[Crossref] [PubMed]

Yasuno, Y.

Yun, S. H.

Zhang, X. L.

X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, and J. L. Liao, “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52, 063603 (2013).

Zhu, Q.

Appl. Opt. (1)

Biomed. Opt. Express (2)

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. K. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt. 16(3), 030501 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

D. J. Faber and T. G. van Leeuwen, “Doppler calibration method for Spectral Domain OCT spectrometers,” J. Biophotonics 2(6-7), 407–415 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Res. Natl. Inst. Stand. Technol. (1)

A. K. Gaigalas, L. Wang, H. J. He, and P. DeRose, “Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers,” J. Res. Natl. Inst. Stand. Technol. 114(4), 215–228 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Opt. Commun. (3)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

J. H. Kim, J. H. Han, and J. Jeong, “Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer,” Opt. Commun. 367, 186–191 (2016).
[Crossref]

M. Szkulmowski, A. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[Crossref]

Opt. Eng. (1)

X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, and J. L. Liao, “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52, 063603 (2013).

Opt. Express (13)

A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express 21(15), 17711–17729 (2013).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[Crossref] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(16), 14281–14297 (2009).
[Crossref] [PubMed]

M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[Crossref] [PubMed]

F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20(1), 385–396 (2012).
[Crossref] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref] [PubMed]

S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18(10), 10446–10461 (2010).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Spectrosc. (1)

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[Crossref]

Optik (Stuttg.) (1)

C. Ding, P. Bu, X. Z. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
[Crossref]

Other (2)

M. Szkulmowski, S. Tamborski, and M. Wojtkowski, “Wavelength to pixel calibration for FdOCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine Xix 9312 (2015).

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: Snapshot retinal imaging at 6.7 million axial-scans per second,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine Xvi 8213 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Parameters used in spectrometer mapping using Doppler frequency. a. STdOCT diagram. Presented data are obtained from the moving mirror experiment. Red dotted lines mark the zero optical delay (vertical) and zero velocity delay (horizontal). Data plotted in all panels are the real valued amplitudes of spectra (kt plane) or its Fourier transforms (other planes). b. kω panel of the STdOCT diagram with the detected Doppler frequency marked as a blue line. n D , m i n and n D , m i n are minimal and maximal Doppler frequencies detected from the spectra; Δ Ω = ω D , m a x ω D , m i n is the Doppler frequency spread; n D , m i n and n D , m a x are positions of ω D , m i n and ω D , m i n in units of Fourier transform points; n D , i is the position of Doppler frequency value of i-th spectrum point in units of Fourier transform points; k i – value of k for i -th spectrum point; Δ K = k m a x k m i n – spectral spread of the spectrometer; N k – number of points in spectrum; N ω – number of points in Doppler frequency axis.
Fig. 2
Fig. 2 a. Schematics of SOCT setup used in the experiments. SCLS – supercontinuum light source; FBS – fiber beam splitter; NDF – neutral density filter; DCG – dispersion compensation glass; BS – beam splitter; M – mirror; M + PIEZO – mirror mounted on a piezo-acutator; DG – diffraction grating; CCD – line CCD camera. b. Configuration used for reference procedure. OPO – optical parametric oscillator; OSA – optical spectrum analyzer.
Fig. 3
Fig. 3 a. Difference between mean resampling indexes and resampling indexes calculated using: (in red) Path 1 Wang-Makita approach, 4 different mirror position differences, and (blue) Path 2 Faber approach, 11 measurements with different Doppler frequencies. Solid lines are mean resampling indexes for each path while dotted lines are standard deviations. b Comparison of the wavelength calculated with resampling indexes from a. used to linearize Data set 2 and calculate imaging range.
Fig. 4
Fig. 4 a. Overlay of narrow spectral lines generated by optical parametric oscillator (OPO) and measured with (black) optical spectrum analyzer (OSA) and (red) SOCT spectrometer. The OCT data is plotted against wavelengths mean calculated following Path 1. b. Difference in wavelength position between spectral lines from generated with OPO measured with SOCT spectrometer. Wavelengths for SOCT data are calculated following (in red) Path 1 Wang-Makita approach, 4 different mirror position differences, and (in blue) Path 2 Faber approach, 11 measurements with different Doppler frequencies. c-e. OPO spectral lines from a. with overlaid wavelength errors from Fig. 3(b). Solid lines are spectral lines plotted against mean wavelength while dotted lines are standard deviations of wavelengths.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n i = P k ( r ) ( q f i r s t + i q l a s t q f i r s t N k 1 ) ,
Φ ( k ) = 2 z k + ϕ D ( k ) .
ϕ D ( k ) Φ ( k ) l i n e a r . f i t ( Φ ( k ) ) .
q i = γ q k i ,
γ q = Δ Q Δ K .
z max = π 2 Δ k ,
γ q = Δ Q 2 z max π N k .
k i = q i Δ Q π N k 2 z max ,
λ i = Δ Q q i 4 z max N k .
I ( k , t ) cos ( 2 ( z + v t ) k ) = cos ( 2 z k + 2 v k t ) ,
q ω = γ ω k ω D = 2 v k .
k i = ω D , i Δ Ω π N k 2 z max ,
λ i = Δ Ω ω D , i 4 z max N k .
Δ Ω = ω D , m a x ω D , m i n = 2 v k m a x 2 v k m i n = 2 v N k Δ k .
v = Δ Ω z m a x π N k .

Metrics