Abstract

Bioluminescence imaging (BLI) is used in biomedical research to monitor biological processes within living organisms. Recently, fiber bundles with high transmittance and density have been developed to detect low light with high resolution. Therefore, we have developed a bundled-fiber-coupled microscope with a highly sensitive cooled-CCD camera that enables the BLI of organs within the mouse body. This is the first report of in vivo BLI of the brain and multiple organs in luciferase-reporter mice using bundled-fiber optics. With reflectance imaging, the structures of blood vessels and organs can be seen clearly with light illumination, and it allowed identification of the structural details of bioluminescence images. This technique can also be applied to clinical diagnostics in a low invasive manner.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation

Pierre-Yves Fortin, Coralie Genevois, Mathilde Chapolard, Tomàs Santalucía, Anna M. Planas, and Franck Couillaud
Biomed. Opt. Express 5(2) 457-467 (2014)

In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models

Junting Liu, Yabin Wang, Xiaochao Qu, Xiangsi Li, Xiaopeng Ma, Runqiang Han, Zhenhua Hu, Xueli Chen, Dongdong Sun, Rongqing Zhang, Duofang Chen, Dan Chen, Xiaoyuan Chen, Jimin Liang, Feng Cao, and Jie Tian
Opt. Express 18(12) 13102-13113 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
    [Crossref] [PubMed]
  2. M. Deluca, “Firefly luciferase,” Adv. Enzymol. Relat. Areas Mol. Biol. 44, 37–68 (1976).
    [PubMed]
  3. K. V. Wood, “The chemical mechanism and evolutionary development of beetle bioluminescence,” Photochem. Photobiol. 62(4), 662–673 (1995).
    [Crossref]
  4. O. Shimomura, Bioluminescence: Chemical Principles and Methods (World Scientific, Hackensack, N.J., 2006), pp. xxvii, 470 p.
  5. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3(1), 9–23 (2004).
    [Crossref] [PubMed]
  6. A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
    [Crossref] [PubMed]
  7. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  8. D. Rector and R. Harper, “Imaging of hippocampal neural activity in freely behaving animals,” Behav. Brain Res. 42(2), 143–149 (1991).
    [Crossref] [PubMed]
  9. M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
    [Crossref] [PubMed]
  10. T. Sakurai and K. Koida, “Activity-dependent neuronal signals detected by a fiber-coupled fluorescence microscopy,” Proc. SPIE 8928, 89280V (2014).
  11. T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
    [Crossref] [PubMed]
  12. M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
    [Crossref] [PubMed]
  13. H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
    [Crossref] [PubMed]
  14. Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
    [Crossref] [PubMed]
  15. S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature 418(6901), 935–941 (2002).
    [Crossref] [PubMed]
  16. R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
    [Crossref] [PubMed]
  17. A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
    [Crossref] [PubMed]
  18. L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
    [Crossref] [PubMed]
  19. S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
    [Crossref] [PubMed]
  20. T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
    [Crossref] [PubMed]
  21. R. Matsumura, A. Okamoto, K. Node, and M. Akashi, “Compensation for intracellular environment in expression levels of mammalian circadian clock genes,” Sci. Rep. 4, 4032 (2014).
    [Crossref] [PubMed]
  22. C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
    [Crossref] [PubMed]
  23. F. Lanni, A. S. Waggoner, and D. L. Taylor, “Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy,” J. Cell Biol. 100(4), 1091–1102 (1985).
    [Crossref] [PubMed]
  24. X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
    [Crossref]
  25. M. Nitzan, A. Romem, and R. Koppel, “Pulse oximetry: fundamentals and technology update,” Med. Devices (Auckl.) 7, 231–239 (2014).
    [Crossref] [PubMed]
  26. A. Ago, T. Gonda, K. Kawakami, and H. Sahata, “[Morphological studies on preputial gland of mice--1. Light and transmission electron microscopic observations of preputial gland in male mice],” Exp. Anim. 43(5), 645–649 (1995).
    [PubMed]
  27. M. Keyaerts, V. Caveliers, and T. Lahoutte, “Bioluminescence imaging: looking beyond the light,” Trends Mol. Med. 18(3), 164–172 (2012).
    [Crossref] [PubMed]
  28. Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
    [Crossref] [PubMed]
  29. W. Wang and W. S. El-Deiry, “Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model,” Cancer Biol. Ther. 2(2), 196–202 (2003).
    [Crossref] [PubMed]
  30. M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
    [Crossref] [PubMed]
  31. G. Keiser, F. Xiong, Y. Cui, and P. P. Shum, “Review of diverse optical fibers used in biomedical research and clinical practice,” J. Biomed. Opt. 19(8), 080902 (2014).
    [Crossref] [PubMed]
  32. J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
    [Crossref] [PubMed]
  33. X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
    [Crossref] [PubMed]
  34. M. Hughes, P. Giataganas, and G. Z. Yang, “Color reflectance fiber bundle endomicroscopy without back-reflections,” J. Biomed. Opt. 19(3), 030501 (2014).
    [Crossref] [PubMed]
  35. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19(7), 1035–1038 (1980).
    [Crossref] [PubMed]
  36. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., New York, USA, 1991).
  37. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
    [Crossref]
  38. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
    [Crossref] [PubMed]
  39. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref] [PubMed]
  40. S. T. Adams and S. C. Miller, “Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo,” Curr. Opin. Chem. Biol. 21, 112–120 (2014).
    [Crossref] [PubMed]
  41. K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
    [Crossref] [PubMed]
  42. K. Saito and T. Nagai, “Recent progress in luminescent proteins development,” Curr. Opin. Chem. Biol. 27, 46–51 (2015).
    [Crossref] [PubMed]
  43. F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
    [Crossref] [PubMed]
  44. Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
    [Crossref] [PubMed]
  45. D. C. Klein, R. Y. Moore, and S. M. Reppert, Suprachiasmatic nucleus: the mind's clock (Oxford University Press, New York, 1991), pp. xvi, 467 p.
  46. J. A. Mohawk and J. S. Takahashi, “Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators,” Trends Neurosci. 34(7), 349–358 (2011).
    [Crossref] [PubMed]
  47. S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
    [Crossref] [PubMed]

2015 (1)

K. Saito and T. Nagai, “Recent progress in luminescent proteins development,” Curr. Opin. Chem. Biol. 27, 46–51 (2015).
[Crossref] [PubMed]

2014 (6)

S. T. Adams and S. C. Miller, “Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo,” Curr. Opin. Chem. Biol. 21, 112–120 (2014).
[Crossref] [PubMed]

T. Sakurai and K. Koida, “Activity-dependent neuronal signals detected by a fiber-coupled fluorescence microscopy,” Proc. SPIE 8928, 89280V (2014).

R. Matsumura, A. Okamoto, K. Node, and M. Akashi, “Compensation for intracellular environment in expression levels of mammalian circadian clock genes,” Sci. Rep. 4, 4032 (2014).
[Crossref] [PubMed]

M. Nitzan, A. Romem, and R. Koppel, “Pulse oximetry: fundamentals and technology update,” Med. Devices (Auckl.) 7, 231–239 (2014).
[Crossref] [PubMed]

G. Keiser, F. Xiong, Y. Cui, and P. P. Shum, “Review of diverse optical fibers used in biomedical research and clinical practice,” J. Biomed. Opt. 19(8), 080902 (2014).
[Crossref] [PubMed]

M. Hughes, P. Giataganas, and G. Z. Yang, “Color reflectance fiber bundle endomicroscopy without back-reflections,” J. Biomed. Opt. 19(3), 030501 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (6)

M. Keyaerts, V. Caveliers, and T. Lahoutte, “Bioluminescence imaging: looking beyond the light,” Trends Mol. Med. 18(3), 164–172 (2012).
[Crossref] [PubMed]

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

2011 (3)

J. A. Mohawk and J. S. Takahashi, “Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators,” Trends Neurosci. 34(7), 349–358 (2011).
[Crossref] [PubMed]

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

2010 (1)

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[Crossref] [PubMed]

2008 (1)

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

2007 (1)

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

2006 (3)

T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
[Crossref] [PubMed]

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

2004 (4)

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3(1), 9–23 (2004).
[Crossref] [PubMed]

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

2003 (1)

W. Wang and W. S. El-Deiry, “Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model,” Cancer Biol. Ther. 2(2), 196–202 (2003).
[Crossref] [PubMed]

2002 (2)

S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature 418(6901), 935–941 (2002).
[Crossref] [PubMed]

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

2001 (2)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

2000 (2)

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

1997 (2)

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

1996 (1)

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[Crossref] [PubMed]

1995 (2)

K. V. Wood, “The chemical mechanism and evolutionary development of beetle bioluminescence,” Photochem. Photobiol. 62(4), 662–673 (1995).
[Crossref]

A. Ago, T. Gonda, K. Kawakami, and H. Sahata, “[Morphological studies on preputial gland of mice--1. Light and transmission electron microscopic observations of preputial gland in male mice],” Exp. Anim. 43(5), 645–649 (1995).
[PubMed]

1991 (1)

D. Rector and R. Harper, “Imaging of hippocampal neural activity in freely behaving animals,” Behav. Brain Res. 42(2), 143–149 (1991).
[Crossref] [PubMed]

1985 (1)

F. Lanni, A. S. Waggoner, and D. L. Taylor, “Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy,” J. Cell Biol. 100(4), 1091–1102 (1985).
[Crossref] [PubMed]

1980 (1)

1976 (1)

M. Deluca, “Firefly luciferase,” Adv. Enzymol. Relat. Areas Mol. Biol. 44, 37–68 (1976).
[PubMed]

Abe, M.

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Adams, S. T.

S. T. Adams and S. C. Miller, “Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo,” Curr. Opin. Chem. Biol. 21, 112–120 (2014).
[Crossref] [PubMed]

Ago, A.

A. Ago, T. Gonda, K. Kawakami, and H. Sahata, “[Morphological studies on preputial gland of mice--1. Light and transmission electron microscopic observations of preputial gland in male mice],” Exp. Anim. 43(5), 645–649 (1995).
[PubMed]

Akashi, M.

R. Matsumura, A. Okamoto, K. Node, and M. Akashi, “Compensation for intracellular environment in expression levels of mammalian circadian clock genes,” Sci. Rep. 4, 4032 (2014).
[Crossref] [PubMed]

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

Akazawa, C.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Aksay, E.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Albrecht, U.

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

Appiah, B.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[Crossref] [PubMed]

Arai, Y.

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Ayi, T. C.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Badr, C. E.

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Bailey, J.

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Block, G.

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Block, G. D.

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Bos, T. J.

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Bossuyt, A.

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Boyden, E. S.

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Breckpot, K.

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Caveliers, V.

M. Keyaerts, V. Caveliers, and T. Lahoutte, “Bioluminescence imaging: looking beyond the light,” Trends Mol. Med. 18(3), 164–172 (2012).
[Crossref] [PubMed]

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Chang, T. P.

Chang, Y. F.

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Cheung, E. L.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Cui, Y.

G. Keiser, F. Xiong, Y. Cui, and P. P. Shum, “Review of diverse optical fibers used in biomedical research and clinical practice,” J. Biomed. Opt. 19(8), 080902 (2014).
[Crossref] [PubMed]

Deisseroth, K.

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Deluca, M.

M. Deluca, “Firefly luciferase,” Adv. Enzymol. Relat. Areas Mol. Biol. 44, 37–68 (1976).
[PubMed]

Drezek, R.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[Crossref] [PubMed]

Eichele, G.

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

El-Deiry, W. S.

W. Wang and W. S. El-Deiry, “Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model,” Cancer Biol. Ther. 2(2), 196–202 (2003).
[Crossref] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Fukano, T.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Fukuhara, C.

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Funabiki, K.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Furutani, N.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Fuse, Y.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Giataganas, P.

M. Hughes, P. Giataganas, and G. Z. Yang, “Color reflectance fiber bundle endomicroscopy without back-reflections,” J. Biomed. Opt. 19(3), 030501 (2014).
[Crossref] [PubMed]

Gonda, T.

A. Ago, T. Gonda, K. Kawakami, and H. Sahata, “[Morphological studies on preputial gland of mice--1. Light and transmission electron microscopic observations of preputial gland in male mice],” Exp. Anim. 43(5), 645–649 (1995).
[PubMed]

Hanyu, A.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Hara-Miyauchi, C.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Harper, R.

D. Rector and R. Harper, “Imaging of hippocampal neural activity in freely behaving animals,” Behav. Brain Res. 42(2), 143–149 (1991).
[Crossref] [PubMed]

Hashida, M.

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Hatsugai, N.

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Hattori, M.

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

Hayashi, Y.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Herzog, E. D.

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Hida, A.

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Higuchi, Y.

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Hirano, M.

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[Crossref] [PubMed]

Hirao, A.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Hirose, M.

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Horikawa, K.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Huang, Y.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

Hughes, M.

M. Hughes, P. Giataganas, and G. Z. Yang, “Color reflectance fiber bundle endomicroscopy without back-reflections,” J. Biomed. Opt. 19(3), 030501 (2014).
[Crossref] [PubMed]

M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
[Crossref] [PubMed]

Imamura, T.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Inouye, S. T.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

Ishida, Y.

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Jekic-McMullen, D.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3(1), 9–23 (2004).
[Crossref] [PubMed]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Kang, J. U.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

Kawakami, K.

A. Ago, T. Gonda, K. Kawakami, and H. Sahata, “[Morphological studies on preputial gland of mice--1. Light and transmission electron microscopic observations of preputial gland in male mice],” Exp. Anim. 43(5), 645–649 (1995).
[PubMed]

Keiser, G.

G. Keiser, F. Xiong, Y. Cui, and P. P. Shum, “Review of diverse optical fibers used in biomedical research and clinical practice,” J. Biomed. Opt. 19(8), 080902 (2014).
[Crossref] [PubMed]

Keyaerts, M.

M. Keyaerts, V. Caveliers, and T. Lahoutte, “Bioluminescence imaging: looking beyond the light,” Trends Mol. Med. 18(3), 164–172 (2012).
[Crossref] [PubMed]

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Kobayashi, M.

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Koida, K.

T. Sakurai and K. Koida, “Activity-dependent neuronal signals detected by a fiber-coupled fluorescence microscopy,” Proc. SPIE 8928, 89280V (2014).

Koike, N.

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

Komatsu, T.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Koppel, R.

M. Nitzan, A. Romem, and R. Koppel, “Pulse oximetry: fundamentals and technology update,” Med. Devices (Auckl.) 7, 231–239 (2014).
[Crossref] [PubMed]

Kozakai, N.

T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
[Crossref] [PubMed]

Kubo, Y.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Kudo, T.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Kuroda, H.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Lahoutte, T.

M. Keyaerts, V. Caveliers, and T. Lahoutte, “Bioluminescence imaging: looking beyond the light,” Trends Mol. Med. 18(3), 164–172 (2012).
[Crossref] [PubMed]

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Lanni, F.

F. Lanni, A. S. Waggoner, and D. L. Taylor, “Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy,” J. Cell Biol. 100(4), 1091–1102 (1985).
[Crossref] [PubMed]

Lee, C. C.

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

Liang, X. J.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Lim, C. S.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Liu, A. Q.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Liu, X.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Mamine, T.

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

Matsuda, T.

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Matsumura, R.

R. Matsumura, A. Okamoto, K. Node, and M. Akashi, “Compensation for intracellular environment in expression levels of mammalian circadian clock genes,” Sci. Rep. 4, 4032 (2014).
[Crossref] [PubMed]

Matsuzaki, Y.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Mehta, A. D.

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Menaker, M.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Miller, S. C.

S. T. Adams and S. C. Miller, “Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo,” Curr. Opin. Chem. Biol. 21, 112–120 (2014).
[Crossref] [PubMed]

Mitsui, S.

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Miyajima, A.

T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
[Crossref] [PubMed]

Miyakawa, A.

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[Crossref] [PubMed]

Miyawaki, A.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Mizuno, R.

T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
[Crossref] [PubMed]

Mohawk, J. A.

J. A. Mohawk and J. S. Takahashi, “Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators,” Trends Neurosci. 34(7), 349–358 (2011).
[Crossref] [PubMed]

Moore, D. T.

Mori, A.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

Moriya, Y.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Murai, M.

T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
[Crossref] [PubMed]

Nagai, T.

K. Saito and T. Nagai, “Recent progress in luminescent proteins development,” Curr. Opin. Chem. Biol. 27, 46–51 (2015).
[Crossref] [PubMed]

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Nakahata, Y.

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

Nakajima, Y.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Nakamura, M.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Nakanishi, S.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Nitzan, M.

M. Nitzan, A. Romem, and R. Koppel, “Pulse oximetry: fundamentals and technology update,” Med. Devices (Auckl.) 7, 231–239 (2014).
[Crossref] [PubMed]

Node, K.

R. Matsumura, A. Okamoto, K. Node, and M. Akashi, “Compensation for intracellular environment in expression levels of mammalian circadian clock genes,” Sci. Rep. 4, 4032 (2014).
[Crossref] [PubMed]

Numano, R.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Ohigashi, T.

T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
[Crossref] [PubMed]

Ohnishi, N.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Ohura, Y.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Okada, S.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Okamoto, A.

R. Matsumura, A. Okamoto, K. Node, and M. Akashi, “Compensation for intracellular environment in expression levels of mammalian circadian clock genes,” Sci. Rep. 4, 4032 (2014).
[Crossref] [PubMed]

Okamura, H.

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Okano, H.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Okano, H. J.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Otsuka, M.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Ozawa, R.

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Peleman, C.

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Radcliffe, L. A.

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Rector, D.

D. Rector and R. Harper, “Imaging of hippocampal neural activity in freely behaving animals,” Behav. Brain Res. 42(2), 143–149 (1991).
[Crossref] [PubMed]

Reppert, S. M.

S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature 418(6901), 935–941 (2002).
[Crossref] [PubMed]

Rice, B.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3(1), 9–23 (2004).
[Crossref] [PubMed]

Romem, A.

M. Nitzan, A. Romem, and R. Koppel, “Pulse oximetry: fundamentals and technology update,” Med. Devices (Auckl.) 7, 231–239 (2014).
[Crossref] [PubMed]

Sahata, H.

A. Ago, T. Gonda, K. Kawakami, and H. Sahata, “[Morphological studies on preputial gland of mice--1. Light and transmission electron microscopic observations of preputial gland in male mice],” Exp. Anim. 43(5), 645–649 (1995).
[PubMed]

Saito, K.

K. Saito and T. Nagai, “Recent progress in luminescent proteins development,” Curr. Opin. Chem. Biol. 27, 46–51 (2015).
[Crossref] [PubMed]

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Sakaki, Y.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Sakurai, T.

T. Sakurai and K. Koida, “Activity-dependent neuronal signals detected by a fiber-coupled fluorescence microscopy,” Proc. SPIE 8928, 89280V (2014).

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Sambucetti, L.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3(1), 9–23 (2004).
[Crossref] [PubMed]

Samura, T.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Seo, Y.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Shibata, S.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Shigeyoshi, Y.

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Shu, C.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[Crossref] [PubMed]

Shum, P. P.

G. Keiser, F. Xiong, Y. Cui, and P. P. Shum, “Review of diverse optical fibers used in biomedical research and clinical practice,” J. Biomed. Opt. 19(8), 080902 (2014).
[Crossref] [PubMed]

Soma, H.

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

Song, E. J.

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Spitznagel, E.

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Stepnoski, R.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Sujino, M.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

Sun, J.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[Crossref] [PubMed]

Sun, Z. S.

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

Suzuki, M.

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Tagawa, Y.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Tahara, Y.

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Takahashi, J. S.

J. A. Mohawk and J. S. Takahashi, “Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators,” Trends Neurosci. 34(7), 349–358 (2011).
[Crossref] [PubMed]

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Takahashi, R.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Takumi, T.

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

Tannous, B. A.

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Taylor, D. L.

F. Lanni, A. S. Waggoner, and D. L. Taylor, “Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy,” J. Cell Biol. 100(4), 1091–1102 (1985).
[Crossref] [PubMed]

Tchouate-Gainkam, L. O.

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Tei, H.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

Troy, T.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3(1), 9–23 (2004).
[Crossref] [PubMed]

Tsuji, O.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Ueda, M.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Umeda, N.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

van der Horst, G. T.

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Vanhove, C.

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Verschueren, J.

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Waggoner, A. S.

F. Lanni, A. S. Waggoner, and D. L. Taylor, “Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy,” J. Cell Biol. 100(4), 1091–1102 (1985).
[Crossref] [PubMed]

Wang, L. P.

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Wang, W.

W. Wang and W. S. El-Deiry, “Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model,” Cancer Biol. Ther. 2(2), 196–202 (2003).
[Crossref] [PubMed]

Weaver, D. R.

S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature 418(6901), 935–941 (2002).
[Crossref] [PubMed]

Wilsbacher, L. D.

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Wood, K. V.

K. V. Wood, “The chemical mechanism and evolutionary development of beetle bioluminescence,” Photochem. Photobiol. 62(4), 662–673 (1995).
[Crossref]

Xiong, F.

G. Keiser, F. Xiong, Y. Cui, and P. P. Shum, “Review of diverse optical fibers used in biomedical research and clinical practice,” J. Biomed. Opt. 19(8), 080902 (2014).
[Crossref] [PubMed]

Yamada, K.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

Yamaguchi, S.

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Yamamoto, T.

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

Yamashita, Y.

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[Crossref] [PubMed]

Yamazaki, S.

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Yang, G. Z.

M. Hughes, P. Giataganas, and G. Z. Yang, “Color reflectance fiber bundle endomicroscopy without back-reflections,” J. Biomed. Opt. 19(3), 030501 (2014).
[Crossref] [PubMed]

M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
[Crossref] [PubMed]

Yap, P. H.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Yasuda, A.

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Yawata, S.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Yoshida, Y.

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

Zhuchenko, O.

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

Adv. Enzymol. Relat. Areas Mol. Biol. (1)

M. Deluca, “Firefly luciferase,” Adv. Enzymol. Relat. Areas Mol. Biol. 44, 37–68 (1976).
[PubMed]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Behav. Brain Res. (1)

D. Rector and R. Harper, “Imaging of hippocampal neural activity in freely behaving animals,” Behav. Brain Res. 42(2), 143–149 (1991).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

C. Hara-Miyauchi, O. Tsuji, A. Hanyu, S. Okada, A. Yasuda, T. Fukano, C. Akazawa, M. Nakamura, T. Imamura, Y. Matsuzaki, H. J. Okano, A. Miyawaki, and H. Okano, “Bioluminescent system for dynamic imaging of cell and animal behavior,” Biochem. Biophys. Res. Commun. 419(2), 188–193 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

BMC Mol. Biol. (1)

T. Yamamoto, Y. Nakahata, H. Soma, M. Akashi, T. Mamine, and T. Takumi, “Transcriptional oscillation of canonical clock genes in mouse peripheral tissues,” BMC Mol. Biol. 5(1), 18 (2004).
[Crossref] [PubMed]

Brain Res. (1)

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[Crossref] [PubMed]

Cancer Biol. Ther. (1)

W. Wang and W. S. El-Deiry, “Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model,” Cancer Biol. Ther. 2(2), 196–202 (2003).
[Crossref] [PubMed]

Cell (1)

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee, “RIGUI, a putative mammalian ortholog of the Drosophila period gene,” Cell 90(6), 1003–1011 (1997).
[Crossref] [PubMed]

Curr. Biol. (1)

Y. Tahara, H. Kuroda, K. Saito, Y. Nakajima, Y. Kubo, N. Ohnishi, Y. Seo, M. Otsuka, Y. Fuse, Y. Ohura, T. Komatsu, Y. Moriya, S. Okada, N. Furutani, A. Hirao, K. Horikawa, T. Kudo, and S. Shibata, “In vivo monitoring of peripheral circadian clocks in the mouse,” Curr. Biol. 22(11), 1029–1034 (2012).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (2)

S. T. Adams and S. C. Miller, “Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo,” Curr. Opin. Chem. Biol. 21, 112–120 (2014).
[Crossref] [PubMed]

K. Saito and T. Nagai, “Recent progress in luminescent proteins development,” Curr. Opin. Chem. Biol. 27, 46–51 (2015).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004).
[Crossref] [PubMed]

Eur. J. Neurosci. (1)

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Eur. J. Nucl. Med. Mol. Imaging (1)

M. Keyaerts, J. Verschueren, T. J. Bos, L. O. Tchouate-Gainkam, C. Peleman, K. Breckpot, C. Vanhove, V. Caveliers, A. Bossuyt, and T. Lahoutte, “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission,” Eur. J. Nucl. Med. Mol. Imaging 35(5), 999–1007 (2008).
[Crossref] [PubMed]

Exp. Anim. (1)

A. Ago, T. Gonda, K. Kawakami, and H. Sahata, “[Morphological studies on preputial gland of mice--1. Light and transmission electron microscopic observations of preputial gland in male mice],” Exp. Anim. 43(5), 645–649 (1995).
[PubMed]

Genomics (1)

A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, and H. Tei, “The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription,” Genomics 65(3), 224–233 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

G. Keiser, F. Xiong, Y. Cui, and P. P. Shum, “Review of diverse optical fibers used in biomedical research and clinical practice,” J. Biomed. Opt. 19(8), 080902 (2014).
[Crossref] [PubMed]

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[Crossref] [PubMed]

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

M. Hughes, P. Giataganas, and G. Z. Yang, “Color reflectance fiber bundle endomicroscopy without back-reflections,” J. Biomed. Opt. 19(3), 030501 (2014).
[Crossref] [PubMed]

J. Cell Biol. (1)

F. Lanni, A. S. Waggoner, and D. L. Taylor, “Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy,” J. Cell Biol. 100(4), 1091–1102 (1985).
[Crossref] [PubMed]

J. Endourol. (1)

T. Ohigashi, N. Kozakai, R. Mizuno, A. Miyajima, and M. Murai, “Endocytoscopy: novel endoscopic imaging technology for in-situ observation of bladder cancer cells,” J. Endourol. 20(9), 698–701 (2006).
[Crossref] [PubMed]

J. Neurophysiol. (1)

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Med. Devices (Auckl.) (1)

M. Nitzan, A. Romem, and R. Koppel, “Pulse oximetry: fundamentals and technology update,” Med. Devices (Auckl.) 7, 231–239 (2014).
[Crossref] [PubMed]

Mol. Imaging (1)

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3(1), 9–23 (2004).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, “Luminescent proteins for high-speed single-cell and whole-body imaging,” Nat. Commun. 3, 1262 (2012).
[Crossref] [PubMed]

Nat. Methods (2)

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods 3(10), 785–792 (2006).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Nature (3)

H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki, “Circadian oscillation of a mammalian homologue of the Drosophila period gene,” Nature 389(6650), 512–516 (1997).
[Crossref] [PubMed]

S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature 418(6901), 935–941 (2002).
[Crossref] [PubMed]

S. Yamaguchi, M. Kobayashi, S. Mitsui, Y. Ishida, G. T. van der Horst, M. Suzuki, S. Shibata, and H. Okamura, “View of a mouse clock gene ticking,” Nature 409(6821), 684 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Photochem. Photobiol. (1)

K. V. Wood, “The chemical mechanism and evolutionary development of beetle bioluminescence,” Photochem. Photobiol. 62(4), 662–673 (1995).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. Numano, S. Yamazaki, N. Umeda, T. Samura, M. Sujino, R. Takahashi, M. Ueda, A. Mori, K. Yamada, Y. Sakaki, S. T. Inouye, M. Menaker, and H. Tei, “Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms,” Proc. Natl. Acad. Sci. U.S.A. 103(10), 3716–3721 (2006).
[Crossref] [PubMed]

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe, M. Abe, G. Block, E. Spitznagel, M. Menaker, and J. S. Takahashi, “Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo,” Proc. Natl. Acad. Sci. U.S.A. 99(1), 489–494 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Sakurai and K. Koida, “Activity-dependent neuronal signals detected by a fiber-coupled fluorescence microscopy,” Proc. SPIE 8928, 89280V (2014).

Sci. Rep. (1)

R. Matsumura, A. Okamoto, K. Node, and M. Akashi, “Compensation for intracellular environment in expression levels of mammalian circadian clock genes,” Sci. Rep. 4, 4032 (2014).
[Crossref] [PubMed]

Science (1)

S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei, “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288(5466), 682–685 (2000).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Trends Biotechnol. (1)

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Trends Mol. Med. (1)

M. Keyaerts, V. Caveliers, and T. Lahoutte, “Bioluminescence imaging: looking beyond the light,” Trends Mol. Med. 18(3), 164–172 (2012).
[Crossref] [PubMed]

Trends Neurosci. (1)

J. A. Mohawk and J. S. Takahashi, “Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators,” Trends Neurosci. 34(7), 349–358 (2011).
[Crossref] [PubMed]

Other (3)

D. C. Klein, R. Y. Moore, and S. M. Reppert, Suprachiasmatic nucleus: the mind's clock (Oxford University Press, New York, 1991), pp. xvi, 467 p.

O. Shimomura, Bioluminescence: Chemical Principles and Methods (World Scientific, Hackensack, N.J., 2006), pp. xxvii, 470 p.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., New York, USA, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The bundled-fiber-coupled microscope system. (A) Cross-sectional view of the fiber bundle. The inset shows an enlarged view. (B) Setup of the bundled-fiber-coupled microscope for in vivo BLI and reflectance imaging. The focal plane of the objective lens is optically conjugated with the facial side of a fiber bundle that contacts the surface of the target organ. A laser optically coupled to a fiber is used as the light source for reflectance imaging. OL: Objective lens, TL: tube lens.
Fig. 2
Fig. 2 Experimental setup for spatial resolution analysis of the bundled-fiber-coupled microscope. A fluorescent bead in the air or in water is excited by the fluorescence microscope system, and luminescence imaging of the fluorescence bead is performed by the bundled-fiber-coupled microscope with changing distance, x, from the bead to the facial side of the fiber bundle.
Fig. 3
Fig. 3 Spatial resolution of the bundled-fiber-coupled microscope. (A) Luminescnce images of a single fluorescent bead, 10 – 15 μm in diameter, with changing distance, x = 0, 10, 20 or 30 μm. The dashed circle indicates the edge of the fiber bundle. The scale bar indicates 100 μm. (B) The maximum intensity with changing distance (i: 10 – 15 μm bead, ii: 45 – 53 μm bead). The closed circle indicates in the air and the opened circle indicates in water. The solid and dashed lines represent the smoothed curves of data with the Gaussian kernel (SD = 2.5) in the air and in water, respectively. (C) FWHM (d) in diameter of luminescence image with changing distance (i: 10 – 15 μm bead, ii: 45 – 53 μm bead). The closed circle indicates in the air and the opened circle indicates in water. Both are fitted by a hyperbolic function curve with a solid curve and a dashed curve for air and water, respectively. The inset shows the concept of FWHM, d.
Fig. 4
Fig. 4 Bioluminescence and reflectance images of ffLuc-HEK293 cells. Reflectance image (left) and bioluminescence image (right) with high (upper) and low (bottom) cell densities. The scale bar indicates 100 μm.
Fig. 5
Fig. 5 In vivo bioluminescence and reflectance image of the brain and peripheral organs of Per1-luc mice. Bioluminescence and reflectance image of Cereb cortex (a), testis (b), Pre gla (c), Sub gla (d), and Fat pad (e) of Per1-luc mouse. (Left) Reflectance images with 405 nm illumination. (Middle) Bioluminescence images. (Right) Superposition image of the reflectance image in grayscale and the bioluminescence image as a heat map with 16 colors in lookup tables of ImageJ. The scale bar indicates 100 μm.
Fig. 6
Fig. 6 Bioluminescence intensity. The data show the mean intensity per pixel for an integral time of 5 minutes ± SE (Cereb cortex, 15636 ± 1680, n = 7; testis, 18063 ± 3141, n = 6; Pre gla, 25878 ± 7144, n = 7; Sub gla, 2553 ± 292, n = 7; Fat pad, 2415 ± 673, n = 6 with 50 mM luciferin, and Cereb cortex, 198 ± 42, n = 4; testis, 166 ± 63, n = 4; Pre gla, 109 ± 11, n = 4; Sub gla, 192 ± 28, n = 4; Fat pad, 236 ± 153, n = 3 with 0 mM luciferin; ****p < 0.0001; **p < 0.01 vs. the mean intensity with 0 mM luciferin, unpaired Student’s t test).
Fig. 7
Fig. 7 Ex vivo luciferase assay of Per1-luc mouse. Luciferase activity in the brain and organs of Per1-luc mice were evaluated by ex vivo luciferase assay. Each organ was cut into small pieces and homogenized. The supernatant from each sample were mixed with luciferase assay kit (PicaGene BrillianStar-LT, 301-15371; Toyo Ink Group, Tokyo, Japan). Bioluminescence intensity was measured with a plate reader (Fluoroscan Ascent FL; Thermo Scientific). The protein concentration of the supernatant was determined with a BCA protein assay kit (Pierce BCA Protein Assay Kit, 23227; Thermo Scientific), and used to correct the bioluminescence intensity. Bioluminescence intensity per protein of each organ is plotted (mean ± SE, n = 4 except Sub gla and Fat pad n = 3).
Fig. 8
Fig. 8 Reflectance image with 488 nm illumination. Reflectance images with 488 nm illumination of Cereb cortex (a), testis (b), Pre gla (c), Sub gla (d), and Fat pad (e) of Per1-luc mouse. Triangles in (a) show the overlapping of blood vessels. The scale bar indicates 100 μm.
Fig. 9
Fig. 9 Fluorescence imaging of cell membrane in Pre gla. Pre gla was fixed and stained with the fluorescent marker for the cell membrane (CellMask Deep Red plasma Membrane Stain, C10046, diluted 1:2000 with PBS; Molecular Probes, Eugene, OR). Fluorescence imaging was performed using a confocal microscopy system (A1; Nikon). (a) and (b) show the perspective and magnified fluorescence image, respectively.

Metrics