Abstract

Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo photothermal treatment with real-time monitoring by optical fiber-needle array

Taeseok Daniel Yang, Kwanjun Park, Hyung-Jin Kim, Nu-Ri Im, Byoungjae Kim, TaeHoon Kim, Sohyun Seo, Jae-Seung Lee, Beop-Min Kim, Youngwoon Choi, and Seung-Kuk Baek
Biomed. Opt. Express 8(7) 3482-3492 (2017)

Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE

Vesna Cuplov, Frédéric Pain, and Sébastien Jan
Biomed. Opt. Express 8(3) 1665-1681 (2017)

Interstitial magnetic thermotherapy dosimetry based on shear wave magnetomotive optical coherence elastography

Pin-Chieh Huang, Eric J. Chaney, Rishyashring R. Iyer, Darold R. Spillman, Boris Odintsov, Nahil A. Sobh, and Stephen A. Boppart
Biomed. Opt. Express 10(2) 539-551 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
    [Crossref] [PubMed]
  2. K. Ahmed and S. F. Zaidi, “Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis,” J. Pak. Med. Assoc. 63(4), 504–508 (2013).
    [PubMed]
  3. J. R. Melamed, R. S. Edelstein, and E. S. Day, “Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy,” ACS Nano 9(1), 6–11 (2015).
    [Crossref] [PubMed]
  4. M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).
    [Crossref] [PubMed]
  5. E. van Sonnenberg, W. N. McMullen, and L. Solbiati, Tumor Ablation: Principles and Practice (Springer, 2005).
  6. T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
    [Crossref] [PubMed]
  7. M. Nikfarjam, C. Malcontenti-Wilson, and C. Christophi, “Focal Hyperthermia Produces Progressive Tumor Necrosis Independent of the Initial Thermal Effects,” J. Gastrointest. Surg. 9(3), 410–417 (2005).
    [Crossref] [PubMed]
  8. T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
    [Crossref] [PubMed]
  9. P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
    [Crossref] [PubMed]
  10. T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
    [Crossref] [PubMed]
  11. S. Peeters, M. Kitz, S. Preisser, A. Wetterwald, B. Rothen-Rutishauser, G. N. Thalmann, C. Brandenberger, A. Bailey, and M. Frenz, “Mechanisms of nanoparticle-mediated photomechanical cell damage,” Biomed. Opt. Express 3(3), 435–446 (2012).
    [Crossref] [PubMed]
  12. L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
    [Crossref] [PubMed]
  13. D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
    [Crossref] [PubMed]
  14. R. Singh and S. V. Torti, “Carbon nanotubes in hyperthermia therapy,” Adv. Drug Deliv. Rev. 65(15), 2045–2060 (2013).
    [Crossref] [PubMed]
  15. C. Iancu and L. Mocan, “Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia,” Int. J. Nanomedicine 6, 1675–1684 (2011).
    [Crossref] [PubMed]
  16. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [Crossref] [PubMed]
  17. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
    [Crossref] [PubMed]
  18. A. Elsaesser and C. V. Howard, “Toxicology of nanoparticles,” Adv. Drug Deliv. Rev. 64(2), 129–137 (2012).
    [Crossref] [PubMed]
  19. P. V. Devarajan and S. Jain, Targeted Drug Delivery: Concepts and Design (Springer International Publishing, 2015), Chap 23.
  20. R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
    [Crossref] [PubMed]
  21. H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
    [Crossref] [PubMed]
  22. P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
    [Crossref] [PubMed]
  23. J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
    [Crossref] [PubMed]

2015 (1)

J. R. Melamed, R. S. Edelstein, and E. S. Day, “Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy,” ACS Nano 9(1), 6–11 (2015).
[Crossref] [PubMed]

2014 (3)

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
[Crossref] [PubMed]

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
[Crossref] [PubMed]

2013 (2)

R. Singh and S. V. Torti, “Carbon nanotubes in hyperthermia therapy,” Adv. Drug Deliv. Rev. 65(15), 2045–2060 (2013).
[Crossref] [PubMed]

K. Ahmed and S. F. Zaidi, “Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis,” J. Pak. Med. Assoc. 63(4), 504–508 (2013).
[PubMed]

2012 (3)

2011 (2)

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

C. Iancu and L. Mocan, “Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia,” Int. J. Nanomedicine 6, 1675–1684 (2011).
[Crossref] [PubMed]

2010 (1)

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

2008 (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

2005 (2)

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).
[Crossref] [PubMed]

M. Nikfarjam, C. Malcontenti-Wilson, and C. Christophi, “Focal Hyperthermia Produces Progressive Tumor Necrosis Independent of the Initial Thermal Effects,” J. Gastrointest. Surg. 9(3), 410–417 (2005).
[Crossref] [PubMed]

2004 (1)

P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
[Crossref] [PubMed]

2003 (1)

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

2002 (1)

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

2001 (1)

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

1996 (1)

T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
[Crossref] [PubMed]

1993 (1)

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
[Crossref] [PubMed]

Ahlers, O.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Ahmed, K.

K. Ahmed and S. F. Zaidi, “Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis,” J. Pak. Med. Assoc. 63(4), 504–508 (2013).
[PubMed]

Bae, H.

H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
[Crossref] [PubMed]

Bailey, A.

Baumgartner, R.

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

Beek, J. F.

T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
[Crossref] [PubMed]

Benayas, A.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Betz, C. S.

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

Bickford, L. R.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Borst, C.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
[Crossref] [PubMed]

Böttger, M.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Bown, S. G.

T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
[Crossref] [PubMed]

Brandenberger, C.

Cheng, L.

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
[Crossref] [PubMed]

Christophi, C.

M. Nikfarjam, C. Malcontenti-Wilson, and C. Christophi, “Focal Hyperthermia Produces Progressive Tumor Necrosis Independent of the Initial Thermal Effects,” J. Gastrointest. Surg. 9(3), 410–417 (2005).
[Crossref] [PubMed]

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).
[Crossref] [PubMed]

Coughlin, A. J.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Dai, H.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

Day, E. S.

J. R. Melamed, R. S. Edelstein, and E. S. Day, “Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy,” ACS Nano 9(1), 6–11 (2015).
[Crossref] [PubMed]

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

del Rosal, B.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Dieing, A.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Drezek, R. A.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Edelstein, R. S.

J. R. Melamed, R. S. Edelstein, and E. S. Day, “Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy,” ACS Nano 9(1), 6–11 (2015).
[Crossref] [PubMed]

Eichler, K.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Elsaesser, A.

A. Elsaesser and C. V. Howard, “Toxicology of nanoparticles,” Adv. Drug Deliv. Rev. 64(2), 129–137 (2012).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Engelmann, K.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Felix, R.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Feng, L.

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
[Crossref] [PubMed]

Frenz, M.

García Solé, J.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Goldammer, A.

P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
[Crossref] [PubMed]

Haro-Gonzalez, P.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Hernández-Cordero, J.

Hildebrandt, B.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Howard, C. V.

A. Elsaesser and C. V. Howard, “Toxicology of nanoparticles,” Adv. Drug Deliv. Rev. 64(2), 129–137 (2012).
[Crossref] [PubMed]

Hu, Y.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Iancu, C.

C. Iancu and L. Mocan, “Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia,” Int. J. Nanomedicine 6, 1675–1684 (2011).
[Crossref] [PubMed]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Janda, P.

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

Jaque, D.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Kennedy, L. C.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Kerner, T.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Kim, H. T.

H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
[Crossref] [PubMed]

Kitz, M.

Kusimo, A.

H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
[Crossref] [PubMed]

Leunig, A.

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

Lewinski, N. A.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Liu, Z.

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
[Crossref] [PubMed]

Luong, R.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

Mack, M. G.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Malcontenti-Wilson, C.

M. Nikfarjam, C. Malcontenti-Wilson, and C. Christophi, “Focal Hyperthermia Produces Progressive Tumor Necrosis Independent of the Initial Thermal Effects,” J. Gastrointest. Surg. 9(3), 410–417 (2005).
[Crossref] [PubMed]

Martín Rodríguez, E.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Martínez Maestro, L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Meertens, J. H.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
[Crossref] [PubMed]

Melamed, J. R.

J. R. Melamed, R. S. Edelstein, and E. S. Day, “Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy,” ACS Nano 9(1), 6–11 (2015).
[Crossref] [PubMed]

Menovsky, T.

T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
[Crossref] [PubMed]

Mocan, L.

C. Iancu and L. Mocan, “Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia,” Int. J. Nanomedicine 6, 1675–1684 (2011).
[Crossref] [PubMed]

Mundweil, B.

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

Muralidharan, V.

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).
[Crossref] [PubMed]

Nikfarjam, M.

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).
[Crossref] [PubMed]

M. Nikfarjam, C. Malcontenti-Wilson, and C. Christophi, “Focal Hyperthermia Produces Progressive Tumor Necrosis Independent of the Initial Thermal Effects,” J. Gastrointest. Surg. 9(3), 410–417 (2005).
[Crossref] [PubMed]

Peeters, S.

Pimentel-Domínguez, R.

Plaza, J. L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Post, M. J.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
[Crossref] [PubMed]

Preisser, S.

Riess, H.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Robinson, J. T.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

Rothen-Rutishauser, B.

Roux, F. X.

T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
[Crossref] [PubMed]

Schneider, J. P.

P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
[Crossref] [PubMed]

Schober, R.

P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
[Crossref] [PubMed]

Schulze, P. C.

P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
[Crossref] [PubMed]

Sherlock, S. P.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

Singh, R.

R. Singh and S. V. Torti, “Carbon nanotubes in hyperthermia therapy,” Adv. Drug Deliv. Rev. 65(15), 2045–2060 (2013).
[Crossref] [PubMed]

Sreenivasa, G.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Sroka, R.

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

Straub, R.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Tabakman, S. M.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

Thalmann, G. N.

Torti, S. V.

R. Singh and S. V. Torti, “Carbon nanotubes in hyperthermia therapy,” Adv. Drug Deliv. Rev. 65(15), 2045–2060 (2013).
[Crossref] [PubMed]

van Gemert, M. J.

T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
[Crossref] [PubMed]

van Leeuwen, T. G.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
[Crossref] [PubMed]

Velema, E.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
[Crossref] [PubMed]

Vitzthum, H. E.

P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
[Crossref] [PubMed]

Vogl, T. J.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Wang, C.

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
[Crossref] [PubMed]

Wang, H.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

Welsher, K.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

West, J. L.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Wetterwald, A.

Woitaschek, D.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Wust, P.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Yang, K.

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
[Crossref] [PubMed]

Yu, M.

H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
[Crossref] [PubMed]

Zaidi, S. F.

K. Ahmed and S. F. Zaidi, “Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis,” J. Pak. Med. Assoc. 63(4), 504–508 (2013).
[PubMed]

Zangos, S.

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Zenit, R.

Zhang, Z.

H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
[Crossref] [PubMed]

ACS Nano (1)

J. R. Melamed, R. S. Edelstein, and E. S. Day, “Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy,” ACS Nano 9(1), 6–11 (2015).
[Crossref] [PubMed]

Acta Neurochir. (Wien) (2)

T. Menovsky, J. F. Beek, M. J. van Gemert, F. X. Roux, and S. G. Bown, “Interstitial Laser Thermotherapy in Neurosurgery: A Review,” Acta Neurochir. (Wien) 138(9), 1019–1026 (1996).
[Crossref] [PubMed]

P. C. Schulze, H. E. Vitzthum, A. Goldammer, J. P. Schneider, and R. Schober, “Laser-induced thermotherapy of neoplastic lesions in the brain-underlying tissue alterations, MRI-monitoring and clinical applicability,” Acta Neurochir. (Wien) 146(8), 803–812 (2004).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (2)

R. Singh and S. V. Torti, “Carbon nanotubes in hyperthermia therapy,” Adv. Drug Deliv. Rev. 65(15), 2045–2060 (2013).
[Crossref] [PubMed]

A. Elsaesser and C. V. Howard, “Toxicology of nanoparticles,” Adv. Drug Deliv. Rev. 64(2), 129–137 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

H. T. Kim, H. Bae, Z. Zhang, A. Kusimo, and M. Yu, “Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater,” Biomicrofluidics 8(5), 054126 (2014).
[Crossref] [PubMed]

Chem. Rev. (1)

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional Nanomaterials for Phototherapies of Cancer,” Chem. Rev. 114(21), 10869–10939 (2014).
[Crossref] [PubMed]

Circulation (1)

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, and C. Borst, “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit,” Circulation 87(4), 1258–1263 (1993).
[Crossref] [PubMed]

Crit. Rev. Oncol. Hematol. (1)

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Eur. J. Ultrasound (1)

T. J. Vogl, K. Eichler, R. Straub, K. Engelmann, S. Zangos, D. Woitaschek, M. Böttger, and M. G. Mack, “Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)-side effects, complications and results,” Eur. J. Ultrasound 13(2), 117–127 (2001).
[Crossref] [PubMed]

Int. J. Nanomedicine (1)

C. Iancu and L. Mocan, “Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia,” Int. J. Nanomedicine 6, 1675–1684 (2011).
[Crossref] [PubMed]

J. Gastrointest. Surg. (1)

M. Nikfarjam, C. Malcontenti-Wilson, and C. Christophi, “Focal Hyperthermia Produces Progressive Tumor Necrosis Independent of the Initial Thermal Effects,” J. Gastrointest. Surg. 9(3), 410–417 (2005).
[Crossref] [PubMed]

J. Pak. Med. Assoc. (1)

K. Ahmed and S. F. Zaidi, “Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis,” J. Pak. Med. Assoc. 63(4), 504–508 (2013).
[PubMed]

J. Surg. Res. (1)

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

P. Janda, R. Sroka, B. Mundweil, C. S. Betz, R. Baumgartner, and A. Leunig, “Comparison of Thermal Tissue Effects Induced by Contact Application of Fiber Guided Laser Systems,” Lasers Surg. Med. 33(2), 93–101 (2003).
[Crossref] [PubMed]

Nano Res. (1)

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref] [PubMed]

Nanoscale (1)

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Small (1)

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Other (2)

P. V. Devarajan and S. Jain, Targeted Drug Delivery: Concepts and Design (Springer International Publishing, 2015), Chap 23.

E. van Sonnenberg, W. N. McMullen, and L. Solbiati, Tumor Ablation: Principles and Practice (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the fabrication process of the OFMH. The illustrations show the procedure followed for coating the optical fibers end faces with different nanostructures: (A) carbon nanotubes with a gold layer, and (B) gold nanolayers created by sputtering.
Fig. 2
Fig. 2 Experimental setup for generating photothermal lesions in mouse liver with the OFMH.
Fig. 3
Fig. 3 Images of typical OFMH; the diameter of the microheater is 125μm.
Fig. 4
Fig. 4 Micrographs of the surface of the OFMH-CNT and OFMH-Au, compared to a pristine optical fiber.
Fig. 5
Fig. 5 Lesions induced in mouse liver by an OFMH-CNT. The exposure time was 10s. Inset: carbonization obtained with 166mW and 30s for an OFMH-CNT (scale bar: 100μm).
Fig. 6
Fig. 6 Size of mouse liver lesion induced with the OFMH as a function of: (a) the optical power, and (b) exposure time. The curves corresponding to OFM-CNT are shown in red color, the curves for OFMH-Au are shown in green, blue dots corresponds to the lesions induced with pristine optical fiber. The R2 values for the linear fit of (a, solid lines) are 0.943 (OFMH-CNT/10s), 0.762 (OFMH-CNT/60s), 0.834 (OFMH-Au/10s) and 0.868 (OFMH-Au/60s). For (b, solid lines), the resulting fitting is logarithmic with with R2 values of 0.977 (OFMH-CNT/165 mW) and 0.834 (OFMH-Au/165 mW).
Fig. 7
Fig. 7 SEM micrographs of lesions caused by OFMH-CNT (184mW and 60s), OFMH-Au (146mW and 60s) and a pristine optical fiber (269mW and 240s).
Fig. 8
Fig. 8 A representative image of histological lesion induced by a microheater in mouse liver. A) Effect of the physical placement microheater without light, showing liver tissue integrity. B) Photothermal effects on the tissue induced by the microheater: normal histology of the liver tissue is interrupted by a lesion (the blue arrows point to the inner edge of the lesion) and a necrotic border is also observed (red arrows delimited the necrotic border). The lesion was induced with OFM-CNT (269mW and 30s).

Tables (1)

Tables Icon

Table 1 Experimental parameters used to obtain photothermal lesions

Metrics