Abstract

We report the utility of a rapid polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique developed for optical diagnosis and characterization of dental caries in the tooth. Hyperspectral SRS images (512 × 512 pixels) of the tooth covering both the fingerprint (800-1800 cm−1) and high-wavenumber (2800-3600 cm−1) regions can be acquired within 15 minutes, which is at least 103 faster in imaging speed than confocal Raman mapping. Hyperspectral SRS imaging uncovers the biochemical distributions and variations across the carious enamel in the tooth. SRS imaging shows that compared to the sound enamel, the mineral content in the body of lesion decreases by 55%; while increasing up to 110% in the surface zone, indicating the formation of a hyper-mineralized layer due to the remineralization process. Further polarized SRS imaging shows that the depolarization ratios of hydroxyapatite crystals (ν1-PO43- of SRS at 959 cm−1) of the tooth in the sound enamel, translucent zone, body of lesion and the surface zone are 0.035 ± 0.01, 0.052 ± 0.02, 0.314 ± 0.1, 0.038 ± 0.02, respectively, providing a new diagnostic criterion for discriminating carious lesions from sound enamel in the teeth. This work demonstrates for the first time that the polarization-resolved hyperspectral SRS imaging technique can be used for quantitatively determining tooth mineralization levels and discriminating carious lesions from sound enamel in a rapid fashion, proving its promising potential of early detection and diagnosis of dental caries without labeling.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of early dental caries using polarized Raman spectroscopy

Alex C.-T. Ko, Lin-P’ing Choo-Smith, Mark Hewko, Michael G. Sowa, Cecilia C.S. Dong, and Blaine Cleghorn
Opt. Express 14(1) 203-215 (2006)

Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system

Alex C.-T. Ko, Mark Hewko, Michael G. Sowa, Cecilia C.S. Dong, Blaine Cleghorn, and Lin-P’ing Choo-Smith
Opt. Express 16(9) 6274-6284 (2008)

Full-scale Raman imaging for dental caries detection

Emmanuel Yakubu, Bolan Li, Yuanyuan Duan, and Shan Yang
Biomed. Opt. Express 9(12) 6009-6016 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369(9555), 51–59 (2007).
    [Crossref] [PubMed]
  2. J. D. Featherstone, “Prevention and reversal of dental caries: role of low level fluoride,” Community Dent. Oral Epidemiol. 27(1), 31–40 (1999).
    [Crossref] [PubMed]
  3. K. Ekstrand, V. Qvist, and A. Thylstrup, “Light microscope study of the effect of probing in occlusal surfaces,” Caries Res. 21(4), 368–374 (1987).
    [Crossref] [PubMed]
  4. J. Vaarkamp, J. J. Ten Bosch, E. H. Verdonschot, and S. Tranaeus, “Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination,” J. Dent. Res. 76(4), 875–882 (1997).
    [Crossref] [PubMed]
  5. B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
    [Crossref] [PubMed]
  6. A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
    [Crossref] [PubMed]
  7. A. C. Ko, L. P. i. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, “Detection of early dental caries using polarized Raman spectroscopy,” Opt. Express 14(1), 203–215 (2006).
    [Crossref] [PubMed]
  8. H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73(11), 1703–1710 (1994).
    [PubMed]
  9. H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
    [PubMed]
  10. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  11. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  12. F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
    [Crossref] [PubMed]
  13. F. Lu, W. Zheng, J. Lin, and Z. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
    [Crossref]
  14. P. K. Upputuri, J. Lin, L. Gong, X. Y. Liu, H. Wang, and Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013).
    [Crossref] [PubMed]
  15. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  16. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  17. Y. Liu, C. Y. S. Hsu, C. M. J. Teo, and S. H. Teoh, “Potential Mechanism for the Laser-Fluoride Effect on Enamel Demineralization,” J. Dent. Res. 92(1), 71–75 (2013).
    [Crossref] [PubMed]
  18. Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth,” Appl. Phys. Lett. 108(3), 033701 (2016).
    [Crossref]
  19. H. Tsuda and J. Arends, “Raman spectroscopy in dental research: a short review of recent studies,” Adv. Dent. Res. 11(4), 539–547 (1997).
    [Crossref] [PubMed]
  20. J. Lin, W. Zheng, Z. Wang, and Z. Huang, “Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy,” Appl. Phys. Lett. 105(10), 103705 (2014).
    [Crossref]
  21. J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
    [Crossref] [PubMed]
  22. Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106(3), 033701 (2015).
    [Crossref]
  23. J. Hicks, F. Garcia-Godoy, and C. Flaitz, “Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2),” J. Clin. Pediatr. Dent. 28(2), 119–124 (2005).
    [Crossref] [PubMed]
  24. C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
    [Crossref] [PubMed]
  25. J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Variations in the chemical composition of human enamel,” J. Dent. Res. 53(2), 180–192 (1974).
    [Crossref] [PubMed]
  26. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  27. J. Lin, W. Zheng, H. Wang, and Z. Huang, “Effects of scatterers’ sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation,” Opt. Express 18(10), 10888–10895 (2010).
    [Crossref] [PubMed]
  28. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
    [Crossref] [PubMed]
  29. S. Y. Chen, C. Y. S. Hsu, and C. K. Sun, “Epi-third and second harmonic generation microscopic imaging of abnormal enamel,” Opt. Express 16(15), 11670–11679 (2008).
    [PubMed]

2016 (1)

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth,” Appl. Phys. Lett. 108(3), 033701 (2016).
[Crossref]

2015 (1)

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106(3), 033701 (2015).
[Crossref]

2014 (2)

J. Lin, W. Zheng, Z. Wang, and Z. Huang, “Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy,” Appl. Phys. Lett. 105(10), 103705 (2014).
[Crossref]

J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
[Crossref] [PubMed]

2013 (3)

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

P. K. Upputuri, J. Lin, L. Gong, X. Y. Liu, H. Wang, and Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013).
[Crossref] [PubMed]

Y. Liu, C. Y. S. Hsu, C. M. J. Teo, and S. H. Teoh, “Potential Mechanism for the Laser-Fluoride Effect on Enamel Demineralization,” J. Dent. Res. 92(1), 71–75 (2013).
[Crossref] [PubMed]

2010 (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

F. Lu, W. Zheng, J. Lin, and Z. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

J. Lin, W. Zheng, H. Wang, and Z. Huang, “Effects of scatterers’ sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation,” Opt. Express 18(10), 10888–10895 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

2007 (1)

R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369(9555), 51–59 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (3)

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

J. Hicks, F. Garcia-Godoy, and C. Flaitz, “Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2),” J. Clin. Pediatr. Dent. 28(2), 119–124 (2005).
[Crossref] [PubMed]

2003 (1)

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

2000 (1)

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

1999 (2)

J. D. Featherstone, “Prevention and reversal of dental caries: role of low level fluoride,” Community Dent. Oral Epidemiol. 27(1), 31–40 (1999).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1997 (2)

J. Vaarkamp, J. J. Ten Bosch, E. H. Verdonschot, and S. Tranaeus, “Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination,” J. Dent. Res. 76(4), 875–882 (1997).
[Crossref] [PubMed]

H. Tsuda and J. Arends, “Raman spectroscopy in dental research: a short review of recent studies,” Adv. Dent. Res. 11(4), 539–547 (1997).
[Crossref] [PubMed]

1994 (1)

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73(11), 1703–1710 (1994).
[PubMed]

1987 (1)

K. Ekstrand, V. Qvist, and A. Thylstrup, “Light microscope study of the effect of probing in occlusal surfaces,” Caries Res. 21(4), 368–374 (1987).
[Crossref] [PubMed]

1974 (1)

J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Variations in the chemical composition of human enamel,” J. Dent. Res. 53(2), 180–192 (1974).
[Crossref] [PubMed]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Amaechi, B. T.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Arends, J.

H. Tsuda and J. Arends, “Raman spectroscopy in dental research: a short review of recent studies,” Adv. Dent. Res. 11(4), 539–547 (1997).
[Crossref] [PubMed]

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73(11), 1703–1710 (1994).
[PubMed]

Brookes, S. J.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

Chen, S. Y.

Choo-Smith, L. P.

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Choo-Smith, L. P. i.

Cleghorn, B.

A. C. Ko, L. P. i. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, “Detection of early dental caries using polarized Raman spectroscopy,” Opt. Express 14(1), 203–215 (2006).
[Crossref] [PubMed]

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Cuisinier, F.

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

Dong, C. C. S.

A. C. Ko, L. P. i. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, “Detection of early dental caries using polarized Raman spectroscopy,” Opt. Express 14(1), 203–215 (2006).
[Crossref] [PubMed]

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Ekstrand, K.

K. Ekstrand, V. Qvist, and A. Thylstrup, “Light microscope study of the effect of probing in occlusal surfaces,” Caries Res. 21(4), 368–374 (1987).
[Crossref] [PubMed]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Featherstone, J. D.

J. D. Featherstone, “Prevention and reversal of dental caries: role of low level fluoride,” Community Dent. Oral Epidemiol. 27(1), 31–40 (1999).
[Crossref] [PubMed]

Flaitz, C.

J. Hicks, F. Garcia-Godoy, and C. Flaitz, “Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2),” J. Clin. Pediatr. Dent. 28(2), 119–124 (2005).
[Crossref] [PubMed]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Garcia-Godoy, F.

J. Hicks, F. Garcia-Godoy, and C. Flaitz, “Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2),” J. Clin. Pediatr. Dent. 28(2), 119–124 (2005).
[Crossref] [PubMed]

Gong, L.

Hallsworth, A. S.

J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Variations in the chemical composition of human enamel,” J. Dent. Res. 53(2), 180–192 (1974).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hewko, M.

A. C. Ko, L. P. i. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, “Detection of early dental caries using polarized Raman spectroscopy,” Opt. Express 14(1), 203–215 (2006).
[Crossref] [PubMed]

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Hicks, J.

J. Hicks, F. Garcia-Godoy, and C. Flaitz, “Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2),” J. Clin. Pediatr. Dent. 28(2), 119–124 (2005).
[Crossref] [PubMed]

Higham, S. M.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hsu, C. Y. S.

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth,” Appl. Phys. Lett. 108(3), 033701 (2016).
[Crossref]

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106(3), 033701 (2015).
[Crossref]

Y. Liu, C. Y. S. Hsu, C. M. J. Teo, and S. H. Teoh, “Potential Mechanism for the Laser-Fluoride Effect on Enamel Demineralization,” J. Dent. Res. 92(1), 71–75 (2013).
[Crossref] [PubMed]

S. Y. Chen, C. Y. S. Hsu, and C. K. Sun, “Epi-third and second harmonic generation microscopic imaging of abnormal enamel,” Opt. Express 16(15), 11670–11679 (2008).
[PubMed]

Huang, Z.

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth,” Appl. Phys. Lett. 108(3), 033701 (2016).
[Crossref]

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106(3), 033701 (2015).
[Crossref]

J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
[Crossref] [PubMed]

J. Lin, W. Zheng, Z. Wang, and Z. Huang, “Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy,” Appl. Phys. Lett. 105(10), 103705 (2014).
[Crossref]

P. K. Upputuri, J. Lin, L. Gong, X. Y. Liu, H. Wang, and Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013).
[Crossref] [PubMed]

F. Lu, W. Zheng, J. Lin, and Z. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

J. Lin, W. Zheng, H. Wang, and Z. Huang, “Effects of scatterers’ sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation,” Opt. Express 18(10), 10888–10895 (2010).
[Crossref] [PubMed]

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[Crossref] [PubMed]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[Crossref] [PubMed]

Ismail, A. I.

R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369(9555), 51–59 (2007).
[Crossref] [PubMed]

Jackson, D. A.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Jacquot, B.

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kirkham, J.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

Ko, A. C.

A. C. Ko, L. P. i. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, “Detection of early dental caries using polarized Raman spectroscopy,” Opt. Express 14(1), 203–215 (2006).
[Crossref] [PubMed]

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Leonardi, L.

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Levallois, B.

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Lin, J.

Liu, X. Y.

Liu, Y.

Y. Liu, C. Y. S. Hsu, C. M. J. Teo, and S. H. Teoh, “Potential Mechanism for the Laser-Fluoride Effect on Enamel Demineralization,” J. Dent. Res. 92(1), 71–75 (2013).
[Crossref] [PubMed]

Lu, F.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Panayotov, I.

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

Pitts, N. B.

R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369(9555), 51–59 (2007).
[Crossref] [PubMed]

Podoleanu, A.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Qvist, V.

K. Ekstrand, V. Qvist, and A. Thylstrup, “Light microscope study of the effect of probing in occlusal surfaces,” Caries Res. 21(4), 368–374 (1987).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Robinson, C.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Variations in the chemical composition of human enamel,” J. Dent. Res. 53(2), 180–192 (1974).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Salehi, H.

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

Selwitz, R. H.

R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369(9555), 51–59 (2007).
[Crossref] [PubMed]

Sheppard, C.

Shore, R. C.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

Sowa, M. G.

A. C. Ko, L. P. i. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, “Detection of early dental caries using polarized Raman spectroscopy,” Opt. Express 14(1), 203–215 (2006).
[Crossref] [PubMed]

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Strafford, S.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

Sun, C. K.

Tassery, H.

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

Teh, S.

Ten Bosch, J. J.

J. Vaarkamp, J. J. Ten Bosch, E. H. Verdonschot, and S. Tranaeus, “Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination,” J. Dent. Res. 76(4), 875–882 (1997).
[Crossref] [PubMed]

Teo, C. M. J.

Y. Liu, C. Y. S. Hsu, C. M. J. Teo, and S. H. Teoh, “Potential Mechanism for the Laser-Fluoride Effect on Enamel Demineralization,” J. Dent. Res. 92(1), 71–75 (2013).
[Crossref] [PubMed]

Teoh, S. H.

Y. Liu, C. Y. S. Hsu, C. M. J. Teo, and S. H. Teoh, “Potential Mechanism for the Laser-Fluoride Effect on Enamel Demineralization,” J. Dent. Res. 92(1), 71–75 (2013).
[Crossref] [PubMed]

Terrer, E.

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

Thylstrup, A.

K. Ekstrand, V. Qvist, and A. Thylstrup, “Light microscope study of the effect of probing in occlusal surfaces,” Caries Res. 21(4), 368–374 (1987).
[Crossref] [PubMed]

Tranaeus, S.

J. Vaarkamp, J. J. Ten Bosch, E. H. Verdonschot, and S. Tranaeus, “Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination,” J. Dent. Res. 76(4), 875–882 (1997).
[Crossref] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Tsuda, H.

H. Tsuda and J. Arends, “Raman spectroscopy in dental research: a short review of recent studies,” Adv. Dent. Res. 11(4), 539–547 (1997).
[Crossref] [PubMed]

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73(11), 1703–1710 (1994).
[PubMed]

Upputuri, P. K.

Vaarkamp, J.

J. Vaarkamp, J. J. Ten Bosch, E. H. Verdonschot, and S. Tranaeus, “Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination,” J. Dent. Res. 76(4), 875–882 (1997).
[Crossref] [PubMed]

Verdonschot, E. H.

J. Vaarkamp, J. J. Ten Bosch, E. H. Verdonschot, and S. Tranaeus, “Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination,” J. Dent. Res. 76(4), 875–882 (1997).
[Crossref] [PubMed]

Wang, H.

Wang, Z.

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth,” Appl. Phys. Lett. 108(3), 033701 (2016).
[Crossref]

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106(3), 033701 (2015).
[Crossref]

J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
[Crossref] [PubMed]

J. Lin, W. Zheng, Z. Wang, and Z. Huang, “Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy,” Appl. Phys. Lett. 105(10), 103705 (2014).
[Crossref]

Weatherell, J. A.

J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Variations in the chemical composition of human enamel,” J. Dent. Res. 53(2), 180–192 (1974).
[Crossref] [PubMed]

Williams, P.

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Wood, S. R.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Zheng, W.

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth,” Appl. Phys. Lett. 108(3), 033701 (2016).
[Crossref]

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106(3), 033701 (2015).
[Crossref]

J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
[Crossref] [PubMed]

J. Lin, W. Zheng, Z. Wang, and Z. Huang, “Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy,” Appl. Phys. Lett. 105(10), 103705 (2014).
[Crossref]

J. Lin, W. Zheng, H. Wang, and Z. Huang, “Effects of scatterers’ sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation,” Opt. Express 18(10), 10888–10895 (2010).
[Crossref] [PubMed]

F. Lu, W. Zheng, J. Lin, and Z. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[Crossref] [PubMed]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Adv. Dent. Res. (1)

H. Tsuda and J. Arends, “Raman spectroscopy in dental research: a short review of recent studies,” Adv. Dent. Res. 11(4), 539–547 (1997).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

J. Lin, W. Zheng, Z. Wang, and Z. Huang, “Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy,” Appl. Phys. Lett. 105(10), 103705 (2014).
[Crossref]

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106(3), 033701 (2015).
[Crossref]

Z. Wang, W. Zheng, C. Y. S. Hsu, and Z. Huang, “Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth,” Appl. Phys. Lett. 108(3), 033701 (2016).
[Crossref]

F. Lu, W. Zheng, J. Lin, and Z. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

Biomed. Opt. Express (1)

Caries Res. (1)

K. Ekstrand, V. Qvist, and A. Thylstrup, “Light microscope study of the effect of probing in occlusal surfaces,” Caries Res. 21(4), 368–374 (1987).
[Crossref] [PubMed]

Community Dent. Oral Epidemiol. (1)

J. D. Featherstone, “Prevention and reversal of dental caries: role of low level fluoride,” Community Dent. Oral Epidemiol. 27(1), 31–40 (1999).
[Crossref] [PubMed]

Crit. Rev. Oral Biol. Med. (1)

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11(4), 481–495 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

A. C. Ko, L. P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10(3), 031118 (2005).
[Crossref] [PubMed]

J. Biophotonics (1)

H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, “Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy,” J. Biophotonics 6(10), 765–774 (2013).
[PubMed]

J. Clin. Pediatr. Dent. (1)

J. Hicks, F. Garcia-Godoy, and C. Flaitz, “Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2),” J. Clin. Pediatr. Dent. 28(2), 119–124 (2005).
[Crossref] [PubMed]

J. Dent. Res. (4)

Y. Liu, C. Y. S. Hsu, C. M. J. Teo, and S. H. Teoh, “Potential Mechanism for the Laser-Fluoride Effect on Enamel Demineralization,” J. Dent. Res. 92(1), 71–75 (2013).
[Crossref] [PubMed]

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73(11), 1703–1710 (1994).
[PubMed]

J. Vaarkamp, J. J. Ten Bosch, E. H. Verdonschot, and S. Tranaeus, “Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination,” J. Dent. Res. 76(4), 875–882 (1997).
[Crossref] [PubMed]

J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Variations in the chemical composition of human enamel,” J. Dent. Res. 53(2), 180–192 (1974).
[Crossref] [PubMed]

Lancet (1)

R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369(9555), 51–59 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Science (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (3482 KB)      3-D colocalized multimodal nonlinear microscopic images of DEJ in the tooth
» Visualization 2: AVI (2563 KB)      3-D colocalized multimodal nonlinear microscopic images of dental caries

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the polarization-resolved hyperspectral SRS microscopic system based on a ps laser-pumped optical parametric oscillator (OPO) system. M, mirror; DM, dichroic mirror; MO, microscope objective; PMT, photo-multiplier tube; OPO, optical parametric oscillator; BS, beam splitter; HWP, half-wave plate; PA, polarization analyzer; PD, photodiode; Sync, synchronization for lock-in amplifier. SRS, stimulated Raman scattering; CARS, coherent anti-Stokes Raman scattering; TPEF, two-photon excitation fluorescence; SHG, second-harmonic generation; THG, third-harmonic generation.
Fig. 2
Fig. 2 (a) Polarized light microscope image of enamel caries in the tooth. Carious lesions in enamel can be divided into three zones: surface zone, body of lesion, and the translucent zone, (b) SRS image at 959 cm−1 (ν1-PO43-of HA crystals), (c) Intensity profile of SRS signal at 959 cm−1 along the line in Figs. 2(a)-2(b), reflecting the mineralization levels across the tooth. Regions I to IV correspond to the surface zone, body of lesion, translucent zone and sound enamel, respectively. (d) SRS image at 1070 cm−1 (B type ν1-CO32-); (e) THG image; (f) TPEF image.
Fig. 3
Fig. 3 (a) Comparison of the representative SRS spectra of sound enamel (red), translucent zone (green), body of lesion (magenta) and the surface zone (blue) of the tooth; (b) SRS intensity ratio (I1043/I959) mapping of the same region in Fig. 2(a). (c) Intensity profile of I1043/I959 along the line in Fig. 3(b). Regions I-IV correspond to surface zone, body of lesion, translucent zone, and the sound enamel of the tooth, respectively.
Fig. 4
Fig. 4 (a) SRS image at 959 cm−1of caries in the tooth, (b) Polarization-resolved SRS intensities at 959 cm−1 (ν1-PO43-) as a function of the angle θ between the polarizations of pump and Stokes beams for the four regions (sound enamel, translucent zone, body of lesion, and the surface zone) in the enamel caries; (c) Depolarization ratio mapping of SRS at 959 cm−1 of the same region, (d) Calculated depolarization ratios of sound enamel, translucent zone, body of lesion and surface zone, respectively. The error bars indicate the standard deviations of depolarization ratios of the 12 tooth samples measured.
Fig. 5
Fig. 5 (a-d) Representative 3-D colocalized multimodal nonlinear microscopic images of SRS at 2935 cm−1 (blue), SHG (green), TPEF (magenta), and THG (yellow), in the dentin, enamel and the DEJ vicinity of the tooth at different tooth depths. The overall thickness of the sectioned images is ~72 μm with a z-scanning interval of 0.5 μm. (See Visualization 1 for 3-D multimodal imaging on the tooth).
Fig. 6
Fig. 6 Representative colocalized SRS images at 959 cm−1 (red) and THG images (green) of the tooth containing the sound enamel, translucent zone, body of lesion and the surface zone at the imaging depths of 0 μm, 15 μm and 30 μm, respectively. (See Visualization 2 for complete 3-D multimodal images with an overall imaging depth of 42.5 μm and a scanning step of 0.5 μm).

Metrics