Abstract

We proposed a sensitivity enhancement method of the interference-based signal detection approach and applied it on a swept-source optical coherence tomography (SS-OCT) system through all-fiber optical parametric amplifier (FOPA) and parametric balanced detector (BD). The parametric BD was realized by combining the signal and phase conjugated idler band that was newly-generated through FOPA, and specifically by superimposing these two bands at a photodetector. The sensitivity enhancement by FOPA and parametric BD in SS-OCT were demonstrated experimentally. The results show that SS-OCT with FOPA and SS-OCT with parametric BD can provide more than 9 dB and 12 dB sensitivity improvement, respectively, when compared with the conventional SS-OCT in a spectral bandwidth spanning over 76 nm. To further verify and elaborate their sensitivity enhancement, a bio-sample imaging experiment was conducted on loach eyes by conventional SS-OCT setup, SS-OCT with FOPA and parametric BD at different illumination power levels. All these results proved that using FOPA and parametric BD could improve the sensitivity significantly in SS-OCT systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

Zhao Wang, Hsiang-Chieh Lee, Diedrik Vermeulen, Long Chen, Torben Nielsen, Seo Yeon Park, Allan Ghaemi, Eric Swanson, Chris Doerr, and James Fujimoto
Biomed. Opt. Express 6(7) 2562-2574 (2015)

Optical receiver sensitivity enhancement by single- and dual-band fiber optical parametric amplifier

Jiqiang Kang, M. E. Marhic, Bowen Li, Sisi Tan, Xie Wang, and Kenneth K. Y. Wong
Opt. Express 25(22) 27785-27794 (2017)

Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

Jingjiang Xu, Shaozhen Song, Wei Wei, and Ruikang K. Wang
Biomed. Opt. Express 8(1) 420-435 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  3. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  4. S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7(1), 3–16 (2001).
    [Crossref]
  5. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [Crossref] [PubMed]
  6. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
    [Crossref] [PubMed]
  7. P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28(12), 2325–2330 (1989).
    [Crossref] [PubMed]
  8. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
    [Crossref] [PubMed]
  9. American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).
  10. M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Sel. Top. Quantum Electron. 32(10), 1801–1809 (1996).
    [Crossref]
  11. G. P. Agrawal, Nonlinear fiber optics. (Academic press, 2007).
  12. J. Hansryd, P. Andrekson, M. Westlund, and J. Li, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  13. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27(16), 1439–1441 (2002).
    [Crossref] [PubMed]
  14. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in European conference on optical communication (IEEE, 2009), paper 1.1.4.
  15. T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
    [Crossref]
  16. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
    [Crossref]
  17. C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12(20), 4973–4979 (2004).
    [Crossref] [PubMed]
  18. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
    [Crossref]
  19. B. P. P. Kuo, K. Shimizu, P. C. Chui, and K. K. Y. Wong, “Receiver sensitivity improvement for ON-OFF keying signal by using optical parametric amplifier and balanced detection,” IEEE/LEOS Winter Topical Meeting Series. 59–60 (2008).
  20. Y. Liang, J. Li, P. C. Chui, and K. K. Y. Wong, “High-sensitivity optical preamplifier for WDM systems using an optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(20), 1562–1564 (2009).
    [Crossref]
  21. A. Kumpera, R. Malik, A. Lorences-Riesgo, and P. A. Andrekson, “Parametric coherent receiver,” Opt. Express 23(10), 12952–12964 (2015).
    [Crossref] [PubMed]
  22. R. Leonhardt, B. R. Biedermann, W. Wieser, and R. Huber, “Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser,” Opt. Express 17(19), 16801–16808 (2009).
    [Crossref] [PubMed]
  23. R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
    [Crossref]
  24. J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
    [Crossref] [PubMed]
  25. L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
    [Crossref] [PubMed]
  26. Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
    [Crossref] [PubMed]
  27. W. C. Kuo, C. M. Lai, Y. S. Huang, C. Y. Chang, and Y. M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21(16), 19280–19291 (2013).
    [Crossref] [PubMed]
  28. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
    [Crossref] [PubMed]
  29. E. Goobar, “A Michelson interferometer with balanced detection for the characterization of modulation and noise properties of semiconductor lasers,” IEEE J. Quantum Electron. 29(4), 1116–1130 (1993).
    [Crossref]
  30. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
    [Crossref] [PubMed]
  31. X. Wei, A. K. S. Lau, Y. Xu, C. Zhang, A. Mussot, A. Kudlinski, K. K. Tsia, and K. K. Y. Wong, “Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm,” Opt. Lett. 39(20), 5989–5992 (2014).
    [Crossref] [PubMed]
  32. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008) Chap. 1 & 2.
  33. J. B. Coles, B. P. P. Kuo, N. Alic, S. Moro, C. S. Bres, J. M. Chavez Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, “Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers,” Opt. Express 18(17), 18138–18150 (2010).
    [Crossref] [PubMed]
  34. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2(6-7), 357–363 (2009).
    [Crossref] [PubMed]
  35. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  36. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  37. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999) Chap. 7.
  38. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
    [Crossref] [PubMed]
  39. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
    [Crossref] [PubMed]
  40. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  41. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007).
    [Crossref] [PubMed]

2015 (3)

A. Kumpera, R. Malik, A. Lorences-Riesgo, and P. A. Andrekson, “Parametric coherent receiver,” Opt. Express 23(10), 12952–12964 (2015).
[Crossref] [PubMed]

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
[Crossref] [PubMed]

2014 (2)

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

X. Wei, A. K. S. Lau, Y. Xu, C. Zhang, A. Mussot, A. Kudlinski, K. K. Tsia, and K. K. Y. Wong, “Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm,” Opt. Lett. 39(20), 5989–5992 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
[Crossref] [PubMed]

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

2011 (1)

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

2010 (3)

2009 (4)

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2(6-7), 357–363 (2009).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
[Crossref] [PubMed]

Y. Liang, J. Li, P. C. Chui, and K. K. Y. Wong, “High-sensitivity optical preamplifier for WDM systems using an optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(20), 1562–1564 (2009).
[Crossref]

R. Leonhardt, B. R. Biedermann, W. Wieser, and R. Huber, “Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser,” Opt. Express 17(19), 16801–16808 (2009).
[Crossref] [PubMed]

2007 (2)

2006 (2)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

2003 (1)

2002 (3)

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

J. Hansryd, P. Andrekson, M. Westlund, and J. Li, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27(16), 1439–1441 (2002).
[Crossref] [PubMed]

2001 (1)

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7(1), 3–16 (2001).
[Crossref]

1996 (2)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Sel. Top. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

1993 (2)

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
[Crossref] [PubMed]

E. Goobar, “A Michelson interferometer with balanced detection for the characterization of modulation and noise properties of semiconductor lasers,” IEEE J. Quantum Electron. 29(4), 1116–1130 (1993).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1989 (1)

Aaron, C. C.

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Adler, D. C.

Alic, N.

Andrekson, P.

J. Hansryd, P. Andrekson, M. Westlund, and J. Li, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Andrekson, P. A.

A. Kumpera, R. Malik, A. Lorences-Riesgo, and P. A. Andrekson, “Parametric coherent receiver,” Opt. Express 23(10), 12952–12964 (2015).
[Crossref] [PubMed]

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

J. B. Coles, B. P. P. Kuo, N. Alic, S. Moro, C. S. Bres, J. M. Chavez Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, “Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers,” Opt. Express 18(17), 18138–18150 (2010).
[Crossref] [PubMed]

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Barry, S.

Baumann, B.

Biedermann, B. R.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2(6-7), 357–363 (2009).
[Crossref] [PubMed]

R. Leonhardt, B. R. Biedermann, W. Wieser, and R. Huber, “Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser,” Opt. Express 17(19), 16801–16808 (2009).
[Crossref] [PubMed]

Blessing, D. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Bonner, R. F.

Boppart, S. A.

Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
[Crossref] [PubMed]

Bouma, B. E.

Bower, A. J.

Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
[Crossref] [PubMed]

Bres, C. S.

Cable, A. E.

Cense, B.

Chan, K. T.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

Chang, C. Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chavez Boggio, J. M.

Chen, T. C.

Chen, Y.

Chui, P. C.

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Y. Liang, J. Li, P. C. Chui, and K. K. Y. Wong, “High-sensitivity optical preamplifier for WDM systems using an optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(20), 1562–1564 (2009).
[Crossref]

Coles, J. B.

de Boer, J. F.

de Bruin, D. M.

Drexler, W.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
[Crossref] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Duker, J. S.

Eigenwillig, C. M.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2(6-7), 357–363 (2009).
[Crossref] [PubMed]

Eisenstein, G.

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Sel. Top. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

Emori, Y.

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7(1), 3–16 (2001).
[Crossref]

Esmaeelpour, M.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
[Crossref] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Goobar, E.

E. Goobar, “A Michelson interferometer with balanced detection for the characterization of modulation and noise properties of semiconductor lasers,” IEEE J. Quantum Electron. 29(4), 1116–1130 (1993).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grüner-Nielsen, L.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Hansryd, J.

J. Hansryd, P. Andrekson, M. Westlund, and J. Li, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Hofer, B.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Hsu, K.

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y. S.

Huber, R.

Jacques, S. L.

Jinata, C.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

Kajic, V.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
[Crossref] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Kampik, A.

Kang, J.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

Kapoor, K.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Karlsson, M.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

J. B. Coles, B. P. P. Kuo, N. Alic, S. Moro, C. S. Bres, J. M. Chavez Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, “Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers,” Opt. Express 18(17), 18138–18150 (2010).
[Crossref] [PubMed]

Kazovsky, L. G.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27(16), 1439–1441 (2002).
[Crossref] [PubMed]

Kerbage, C.

Klein, T.

Knüttel, A.

Kudlinski, A.

Kumpera, A.

Kuo, B. P. P.

Kuo, W. C.

Kuo, Y. M.

Lai, C. M.

Lam, E. Y.

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Lau, A. K. S.

Lee, N. P.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

Leonhardt, R.

Li, J.

Y. Liang, J. Li, P. C. Chui, and K. K. Y. Wong, “High-sensitivity optical preamplifier for WDM systems using an optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(20), 1562–1564 (2009).
[Crossref]

J. Hansryd, P. Andrekson, M. Westlund, and J. Li, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Li, Q.

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Liang, Y.

Y. Liang, J. Li, P. C. Chui, and K. K. Y. Wong, “High-sensitivity optical preamplifier for WDM systems using an optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(20), 1562–1564 (2009).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, Y.

Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
[Crossref] [PubMed]

Lorences-Riesgo, A.

Lundström, C.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Malik, R.

Marhic, M. E.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27(16), 1439–1441 (2002).
[Crossref] [PubMed]

Marshall, D.

McKinstrie, C.

McKinstrie, C. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Morin, M.

Moro, S.

Mussot, A.

Namiki, S.

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7(1), 3–16 (2001).
[Crossref]

Nassif, N.

Neubauer, A.

Nishioka, N. S.

North, R. V.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Olsson, B. E.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Painchaud, Y.

Park, B. H.

Parsa, P.

Pierce, M. C.

Potsaid, B.

Poulin, M.

Považay, B.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012).
[Crossref] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Puttnam, B. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Radic, S.

Reznicek, L.

Rosin, P. L.

Schmitt, J. M.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sheen, N. J. L.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

Shtaif, M.

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Sel. Top. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Taira, K.

Tearney, G. J.

Têtu, M.

Tipsuwannakul, E.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Toda, H.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Tong, Z.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Tsai, T. E.

Tsia, K. K.

Tu, H.

Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
[Crossref] [PubMed]

Uesaka, K.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

Wang, X.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

Wei, X.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

X. Wei, A. K. S. Lau, Y. Xu, C. Zhang, A. Mussot, A. Kudlinski, K. K. Tsia, and K. K. Y. Wong, “Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm,” Opt. Lett. 39(20), 5989–5992 (2014).
[Crossref] [PubMed]

Westlund, M.

J. Hansryd, P. Andrekson, M. Westlund, and J. Li, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Wieser, W.

Wojtkowski, M.

Wong, K. K. Y.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

X. Wei, A. K. S. Lau, Y. Xu, C. Zhang, A. Mussot, A. Kudlinski, K. K. Tsia, and K. K. Y. Wong, “Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm,” Opt. Lett. 39(20), 5989–5992 (2014).
[Crossref] [PubMed]

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Y. Liang, J. Li, P. C. Chui, and K. K. Y. Wong, “High-sensitivity optical preamplifier for WDM systems using an optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(20), 1562–1564 (2009).
[Crossref]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27(16), 1439–1441 (2002).
[Crossref] [PubMed]

Xu, J.

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Xu, Y.

Yu, L.

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

Yun, S. H.

Zhang, C.

X. Wei, A. K. S. Lau, Y. Xu, C. Zhang, A. Mussot, A. Kudlinski, K. K. Tsia, and K. K. Y. Wong, “Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm,” Opt. Lett. 39(20), 5989–5992 (2014).
[Crossref] [PubMed]

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Zhao, Y.

Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
[Crossref] [PubMed]

Zhu, R.

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (2)

IEEE J. Quantum Electron. (1)

E. Goobar, “A Michelson interferometer with balanced detection for the characterization of modulation and noise properties of semiconductor lasers,” IEEE J. Quantum Electron. 29(4), 1116–1130 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7(1), 3–16 (2001).
[Crossref]

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Sel. Top. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

J. Hansryd, P. Andrekson, M. Westlund, and J. Li, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

R. Zhu, J. Xu, C. Zhang, C. C. Aaron, Q. Li, P. C. Chui, E. Y. Lam, and K. K. Y. Wong, “Dual-band time-multiplexing swept-source optical coherence tomography based on optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1287–1292 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Liang, J. Li, P. C. Chui, and K. K. Y. Wong, “High-sensitivity optical preamplifier for WDM systems using an optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(20), 1562–1564 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

J. Xu, L. Yu, X. Wei, X. Wang, P. C. Chui, K. T. Chan, E. Y. Lam, N. P. Lee, and K. K. Y. Wong, “Simultaneous dual-band optical coherence tomography for endoscopic applications,” J. Biomed. Opt. 19(12), 126007 (2014).
[Crossref] [PubMed]

L. Yu, J. Kang, C. Jinata, X. Wang, X. Wei, K. T. Chan, N. P. Lee, and K. K. Y. Wong, “Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization,” J. Biomed. Opt. 20(12), 126006 (2015).
[Crossref] [PubMed]

J. Biophotonics (2)

Y. Zhao, H. Tu, Y. Liu, A. J. Bower, and S. A. Boppart, “Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier,” J. Biophotonics 8(6), 512–521 (2015).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2(6-7), 357–363 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Opt. Express (10)

R. Leonhardt, B. R. Biedermann, W. Wieser, and R. Huber, “Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser,” Opt. Express 17(19), 16801–16808 (2009).
[Crossref] [PubMed]

J. B. Coles, B. P. P. Kuo, N. Alic, S. Moro, C. S. Bres, J. M. Chavez Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, “Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers,” Opt. Express 18(17), 18138–18150 (2010).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
[Crossref] [PubMed]

C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12(20), 4973–4979 (2004).
[Crossref] [PubMed]

W. C. Kuo, C. M. Lai, Y. S. Huang, C. Y. Chang, and Y. M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21(16), 19280–19291 (2013).
[Crossref] [PubMed]

A. Kumpera, R. Malik, A. Lorences-Riesgo, and P. A. Andrekson, “Parametric coherent receiver,” Opt. Express 23(10), 12952–12964 (2015).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
[Crossref] [PubMed]

Opt. Lett. (5)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (6)

B. P. P. Kuo, K. Shimizu, P. C. Chui, and K. K. Y. Wong, “Receiver sensitivity improvement for ON-OFF keying signal by using optical parametric amplifier and balanced detection,” IEEE/LEOS Winter Topical Meeting Series. 59–60 (2008).

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in European conference on optical communication (IEEE, 2009), paper 1.1.4.

American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).

G. P. Agrawal, Nonlinear fiber optics. (Academic press, 2007).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999) Chap. 7.

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008) Chap. 1 & 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup. CIR: circulator; PC: polarization controller; DC: dispersion compensator; GM: galvo mirror; HNL-DSF: highly-nonlinear dispersion-shifted fiber; PD: photodetector; W: wavelength division multiplexing (WDM) coupler. X and Y represent two measurement points; A and B represent two filtering channels.
Fig. 2
Fig. 2 Output of FDML laser (in red) and gain spectrum of OPALS (in blue).
Fig. 3
Fig. 3 (a): lateral resolution; (b): axial resolution.
Fig. 4
Fig. 4 Sensitivity and its roll-off: (a) roll-off of conventional SS-OCT; (b) roll-off of SS-OCT with FOPA; (c) roll-off of SS-OCT with parametric BD; (d) Sensitivity comparison of (a), (b) and (c) at about 1 mm mismatch position.
Fig. 5
Fig. 5 Different power value. One: power level one; Two: power level two; three: power level three.
Fig. 6
Fig. 6 Loach eye images at different illumination power levels: One: 6.3 dBm (4.3 mW); Two: 2.97 dBm (2 mW); Three: −0.43 dBm (0.9 mW). Each image was averaged 20 times for speckle reduction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δx= 4λ π f d .
Δz= 2ln2 π λ 2 Δλ .

Metrics