Abstract

Studies of vascular responses are usually performed on isolated vessels or on single vessels in vivo. This allows for precise measurements of diameter or blood flow. However, dynamical responses of the whole microvascular network are difficult to access experimentally. We suggest to use full-field laser speckle imaging to evaluate vascular responses of the retinal network. Image segmentation and vessel recognition algorithms together with response mapping allow us to analyze diameter changes and blood flow responses in the intact retinal network upon systemic administration of the vasoconstrictor angiotensin II, the vasodilator acetylcholine or on the changing level of anesthesia in in vivo rat preparations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimation of vessel diameter and blood flow dynamics from laser speckle images

Dmitry D. Postnov, Valery V. Tuchin, and Olga Sosnovtseva
Biomed. Opt. Express 7(7) 2759-2768 (2016)

Laser speckle imaging of intra organ drug distribution

Dmitry D Postnov, Niels-Henrik Holstein-Rathlou, and Olga Sosnovtseva
Biomed. Opt. Express 6(12) 5055-5062 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Skov Jensen, P. Jeppesen, and T. Bek, “Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions,” Graef. Arch. Clin. Exp. 249(3), 407–412 (2011).
    [Crossref]
  2. A. M. Joussen, N. Smyth, and C. Niessen, “Pathophysiology of diabetic macular edema,” Dev. Ophthalmol. 39, 1–12 (2007).
    [Crossref] [PubMed]
  3. P. R. Herse, “A review of manifestations of diabetes mellitus in the anterior eye and cornea,” Am. J. Optom. Physiol. Opt. 65(3), 224–230 (1988).
    [Crossref] [PubMed]
  4. T. Y. Wong and P. Mitchell, “The eye in hypertension,” Lancet 369(9559), 425–435 (2007).
    [Crossref] [PubMed]
  5. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  6. D. Briers, D. D. Duncan, E. Hirst, and S. J. Kirkpatrick, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
    [Crossref] [PubMed]
  7. K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
    [Crossref] [PubMed]
  8. A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [Crossref]
  9. A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics,  2, pii: 128 (2010).
    [Crossref] [PubMed]
  10. J. Flammer, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
    [Crossref] [PubMed]
  11. G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
    [Crossref] [PubMed]
  12. T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
    [Crossref]
  13. T. Durduran, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
    [Crossref] [PubMed]
  14. A. K. Dunn, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage. 27(2), 279–290 (2005).
    [Crossref] [PubMed]
  15. A. R. Brazhe, D. J. Marsh, N. H. Holstein-Rathlou, and O. Sosnovtseva, “Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data,” PlosOne 9(9), e105879 (2014).
    [Crossref]
  16. D. D Postnov, N.-H. Holstein-Rathlou, and O. Sosnovtseva, “Laser speckle imaging of intra organ drug distribution,” Biomed. Opt. Express 6(12), 5055–5062 (2015).
    [Crossref] [PubMed]
  17. D. D Postnov, O. Sosnovtseva, and V. V. Tuchin, “Improved detectability of microcirculatory dynamics by laser speckle flowmetry,” J Biophotonics 8(10), 790–794 (2015).
    [Crossref] [PubMed]
  18. A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
    [Crossref] [PubMed]
  19. F. H. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of Anatomy & Physiology, 9th ed. (Benjamin Cummings, 2011), Chap. 21
  20. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
    [Crossref] [PubMed]
  21. D. D. Postnov, V. V. Tuchin, and O. Sosnovtseva, “Estimating vessel diameter and blood flow from laser speckle imaging,” J. Biophotonics, (2015) (submitted).
  22. P. J. S. Smith and R. B. Hill, “Modulation of output from an isolated gastropod heart: effects of acetylcholine and FMRFamide,” J. Exp. Biol. 127, 105–120 (1987).
  23. M. V. Cohen and E. S. Kir, “Differential response of large and small coronary arteries to nitroglycerin and angiotensin,” Circ. Res. 33, 445–453 (1973).
    [Crossref] [PubMed]
  24. E. P. Wei, H. A. Kontos, and J. L. Patterson, “Vasoconstrictor effect of angiotensin on pial arteries,” Stroke 9(5), 487–489 (1978).
    [Crossref] [PubMed]

2015 (2)

D. D Postnov, N.-H. Holstein-Rathlou, and O. Sosnovtseva, “Laser speckle imaging of intra organ drug distribution,” Biomed. Opt. Express 6(12), 5055–5062 (2015).
[Crossref] [PubMed]

D. D Postnov, O. Sosnovtseva, and V. V. Tuchin, “Improved detectability of microcirculatory dynamics by laser speckle flowmetry,” J Biophotonics 8(10), 790–794 (2015).
[Crossref] [PubMed]

2014 (1)

A. R. Brazhe, D. J. Marsh, N. H. Holstein-Rathlou, and O. Sosnovtseva, “Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data,” PlosOne 9(9), e105879 (2014).
[Crossref]

2013 (2)

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, and S. J. Kirkpatrick, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

2012 (1)

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

2011 (1)

P. Skov Jensen, P. Jeppesen, and T. Bek, “Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions,” Graef. Arch. Clin. Exp. 249(3), 407–412 (2011).
[Crossref]

2010 (3)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics,  2, pii: 128 (2010).
[Crossref] [PubMed]

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
[Crossref]

2008 (2)

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[Crossref] [PubMed]

H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
[Crossref] [PubMed]

2007 (2)

T. Y. Wong and P. Mitchell, “The eye in hypertension,” Lancet 369(9559), 425–435 (2007).
[Crossref] [PubMed]

A. M. Joussen, N. Smyth, and C. Niessen, “Pathophysiology of diabetic macular edema,” Dev. Ophthalmol. 39, 1–12 (2007).
[Crossref] [PubMed]

2005 (1)

A. K. Dunn, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage. 27(2), 279–290 (2005).
[Crossref] [PubMed]

2004 (1)

T. Durduran, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref] [PubMed]

2002 (1)

J. Flammer, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

1988 (1)

P. R. Herse, “A review of manifestations of diabetes mellitus in the anterior eye and cornea,” Am. J. Optom. Physiol. Opt. 65(3), 224–230 (1988).
[Crossref] [PubMed]

1987 (1)

P. J. S. Smith and R. B. Hill, “Modulation of output from an isolated gastropod heart: effects of acetylcholine and FMRFamide,” J. Exp. Biol. 127, 105–120 (1987).

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

1978 (1)

E. P. Wei, H. A. Kontos, and J. L. Patterson, “Vasoconstrictor effect of angiotensin on pial arteries,” Stroke 9(5), 487–489 (1978).
[Crossref] [PubMed]

1973 (1)

M. V. Cohen and E. S. Kir, “Differential response of large and small coronary arteries to nitroglycerin and angiotensin,” Circ. Res. 33, 445–453 (1973).
[Crossref] [PubMed]

Araie, M.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
[Crossref]

Bartholomew, E. F.

F. H. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of Anatomy & Physiology, 9th ed. (Benjamin Cummings, 2011), Chap. 21

Basak, K.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Bek, T.

P. Skov Jensen, P. Jeppesen, and T. Bek, “Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions,” Graef. Arch. Clin. Exp. 249(3), 407–412 (2011).
[Crossref]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Brazhe, A. R.

A. R. Brazhe, D. J. Marsh, N. H. Holstein-Rathlou, and O. Sosnovtseva, “Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data,” PlosOne 9(9), e105879 (2014).
[Crossref]

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, and S. J. Kirkpatrick, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Briers, J. D.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Cardenas, D.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[Crossref] [PubMed]

Cheng, H.

Cohen, M. V.

M. V. Cohen and E. S. Kir, “Differential response of large and small coronary arteries to nitroglycerin and angiotensin,” Circ. Res. 33, 445–453 (1973).
[Crossref] [PubMed]

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, and S. J. Kirkpatrick, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Dunn, A. K.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

A. K. Dunn, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage. 27(2), 279–290 (2005).
[Crossref] [PubMed]

Duong, T. Q.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[Crossref] [PubMed]

H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
[Crossref] [PubMed]

Durduran, T.

T. Durduran, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref] [PubMed]

Dutta, P. K.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Flammer, J.

J. Flammer, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Fujii, H.

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[Crossref] [PubMed]

Herse, P. R.

P. R. Herse, “A review of manifestations of diabetes mellitus in the anterior eye and cornea,” Am. J. Optom. Physiol. Opt. 65(3), 224–230 (1988).
[Crossref] [PubMed]

Hill, R. B.

P. J. S. Smith and R. B. Hill, “Modulation of output from an isolated gastropod heart: effects of acetylcholine and FMRFamide,” J. Exp. Biol. 127, 105–120 (1987).

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, and S. J. Kirkpatrick, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Holstein-Rathlou, N. H.

A. R. Brazhe, D. J. Marsh, N. H. Holstein-Rathlou, and O. Sosnovtseva, “Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data,” PlosOne 9(9), e105879 (2014).
[Crossref]

Holstein-Rathlou, N.-H.

Jeppesen, P.

P. Skov Jensen, P. Jeppesen, and T. Bek, “Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions,” Graef. Arch. Clin. Exp. 249(3), 407–412 (2011).
[Crossref]

Joussen, A. M.

A. M. Joussen, N. Smyth, and C. Niessen, “Pathophysiology of diabetic macular edema,” Dev. Ophthalmol. 39, 1–12 (2007).
[Crossref] [PubMed]

Kir, E. S.

M. V. Cohen and E. S. Kir, “Differential response of large and small coronary arteries to nitroglycerin and angiotensin,” Circ. Res. 33, 445–453 (1973).
[Crossref] [PubMed]

Kirkpatrick, S. J.

D. Briers, D. D. Duncan, E. Hirst, and S. J. Kirkpatrick, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Kishi, S.

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[Crossref] [PubMed]

Kontos, H. A.

E. P. Wei, H. A. Kontos, and J. L. Patterson, “Vasoconstrictor effect of angiotensin on pial arteries,” Stroke 9(5), 487–489 (1978).
[Crossref] [PubMed]

Kurth-Nelson, Z. L.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics,  2, pii: 128 (2010).
[Crossref] [PubMed]

Manjunatha, M.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Marsh, D. J.

A. R. Brazhe, D. J. Marsh, N. H. Holstein-Rathlou, and O. Sosnovtseva, “Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data,” PlosOne 9(9), e105879 (2014).
[Crossref]

Martini, F. H.

F. H. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of Anatomy & Physiology, 9th ed. (Benjamin Cummings, 2011), Chap. 21

Mitchell, P.

T. Y. Wong and P. Mitchell, “The eye in hypertension,” Lancet 369(9559), 425–435 (2007).
[Crossref] [PubMed]

Nath, J. L.

F. H. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of Anatomy & Physiology, 9th ed. (Benjamin Cummings, 2011), Chap. 21

Newman, E. A.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics,  2, pii: 128 (2010).
[Crossref] [PubMed]

Niessen, C.

A. M. Joussen, N. Smyth, and C. Niessen, “Pathophysiology of diabetic macular edema,” Dev. Ophthalmol. 39, 1–12 (2007).
[Crossref] [PubMed]

Orgul, S.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
[Crossref]

Patterson, J. L.

E. P. Wei, H. A. Kontos, and J. L. Patterson, “Vasoconstrictor effect of angiotensin on pial arteries,” Stroke 9(5), 487–489 (1978).
[Crossref] [PubMed]

Ponticorvo, A.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[Crossref] [PubMed]

Postnov, D. D

D. D Postnov, O. Sosnovtseva, and V. V. Tuchin, “Improved detectability of microcirculatory dynamics by laser speckle flowmetry,” J Biophotonics 8(10), 790–794 (2015).
[Crossref] [PubMed]

D. D Postnov, N.-H. Holstein-Rathlou, and O. Sosnovtseva, “Laser speckle imaging of intra organ drug distribution,” Biomed. Opt. Express 6(12), 5055–5062 (2015).
[Crossref] [PubMed]

Postnov, D. D.

D. D. Postnov, V. V. Tuchin, and O. Sosnovtseva, “Estimating vessel diameter and blood flow from laser speckle imaging,” J. Biophotonics, (2015) (submitted).

Riva, C. E.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
[Crossref]

Schmetterer, L.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
[Crossref]

Skov Jensen, P.

P. Skov Jensen, P. Jeppesen, and T. Bek, “Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions,” Graef. Arch. Clin. Exp. 249(3), 407–412 (2011).
[Crossref]

Smith, P. J. S.

P. J. S. Smith and R. B. Hill, “Modulation of output from an isolated gastropod heart: effects of acetylcholine and FMRFamide,” J. Exp. Biol. 127, 105–120 (1987).

Smyth, N.

A. M. Joussen, N. Smyth, and C. Niessen, “Pathophysiology of diabetic macular edema,” Dev. Ophthalmol. 39, 1–12 (2007).
[Crossref] [PubMed]

Sosnovtseva, O.

D. D Postnov, O. Sosnovtseva, and V. V. Tuchin, “Improved detectability of microcirculatory dynamics by laser speckle flowmetry,” J Biophotonics 8(10), 790–794 (2015).
[Crossref] [PubMed]

D. D Postnov, N.-H. Holstein-Rathlou, and O. Sosnovtseva, “Laser speckle imaging of intra organ drug distribution,” Biomed. Opt. Express 6(12), 5055–5062 (2015).
[Crossref] [PubMed]

A. R. Brazhe, D. J. Marsh, N. H. Holstein-Rathlou, and O. Sosnovtseva, “Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data,” PlosOne 9(9), e105879 (2014).
[Crossref]

D. D. Postnov, V. V. Tuchin, and O. Sosnovtseva, “Estimating vessel diameter and blood flow from laser speckle imaging,” J. Biophotonics, (2015) (submitted).

Srienc, A. I.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics,  2, pii: 128 (2010).
[Crossref] [PubMed]

Sugiyama, T.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
[Crossref]

Ts’o, D.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[Crossref] [PubMed]

Tuchin, V. V.

D. D Postnov, O. Sosnovtseva, and V. V. Tuchin, “Improved detectability of microcirculatory dynamics by laser speckle flowmetry,” J Biophotonics 8(10), 790–794 (2015).
[Crossref] [PubMed]

D. D. Postnov, V. V. Tuchin, and O. Sosnovtseva, “Estimating vessel diameter and blood flow from laser speckle imaging,” J. Biophotonics, (2015) (submitted).

Watanabe, G.

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[Crossref] [PubMed]

Wei, E. P.

E. P. Wei, H. A. Kontos, and J. L. Patterson, “Vasoconstrictor effect of angiotensin on pial arteries,” Stroke 9(5), 487–489 (1978).
[Crossref] [PubMed]

Wong, T. Y.

T. Y. Wong and P. Mitchell, “The eye in hypertension,” Lancet 369(9559), 425–435 (2007).
[Crossref] [PubMed]

Yan, Y.

Acta. Ophthalmol. (1)

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta. Ophthalmol. 88(7), 723–729 (2010).
[Crossref]

Am. J. Optom. Physiol. Opt. (1)

P. R. Herse, “A review of manifestations of diabetes mellitus in the anterior eye and cornea,” Am. J. Optom. Physiol. Opt. 65(3), 224–230 (1988).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Circ. Res. (1)

M. V. Cohen and E. S. Kir, “Differential response of large and small coronary arteries to nitroglycerin and angiotensin,” Circ. Res. 33, 445–453 (1973).
[Crossref] [PubMed]

Dev. Ophthalmol. (1)

A. M. Joussen, N. Smyth, and C. Niessen, “Pathophysiology of diabetic macular edema,” Dev. Ophthalmol. 39, 1–12 (2007).
[Crossref] [PubMed]

Front. Neuroenergetics (1)

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics,  2, pii: 128 (2010).
[Crossref] [PubMed]

Graef. Arch. Clin. Exp. (1)

P. Skov Jensen, P. Jeppesen, and T. Bek, “Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions,” Graef. Arch. Clin. Exp. 249(3), 407–412 (2011).
[Crossref]

J Biophotonics (1)

D. D Postnov, O. Sosnovtseva, and V. V. Tuchin, “Improved detectability of microcirculatory dynamics by laser speckle flowmetry,” J Biophotonics 8(10), 790–794 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, and S. J. Kirkpatrick, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

T. Durduran, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref] [PubMed]

J. Exp. Biol. (1)

P. J. S. Smith and R. B. Hill, “Modulation of output from an isolated gastropod heart: effects of acetylcholine and FMRFamide,” J. Exp. Biol. 127, 105–120 (1987).

Jpn. J. Ophthalmol. (1)

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[Crossref] [PubMed]

Lancet (1)

T. Y. Wong and P. Mitchell, “The eye in hypertension,” Lancet 369(9559), 425–435 (2007).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547–558 (2012).
[Crossref] [PubMed]

Neuroimage. (1)

A. K. Dunn, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage. 27(2), 279–290 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Opt. Express (1)

PlosOne (1)

A. R. Brazhe, D. J. Marsh, N. H. Holstein-Rathlou, and O. Sosnovtseva, “Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data,” PlosOne 9(9), e105879 (2014).
[Crossref]

Prog. Retin. Eye Res. (1)

J. Flammer, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[Crossref] [PubMed]

Stroke (1)

E. P. Wei, H. A. Kontos, and J. L. Patterson, “Vasoconstrictor effect of angiotensin on pial arteries,” Stroke 9(5), 487–489 (1978).
[Crossref] [PubMed]

Other (2)

F. H. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of Anatomy & Physiology, 9th ed. (Benjamin Cummings, 2011), Chap. 21

D. D. Postnov, V. V. Tuchin, and O. Sosnovtseva, “Estimating vessel diameter and blood flow from laser speckle imaging,” J. Biophotonics, (2015) (submitted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Representation of the experimental set up (left panel) and the experimental protocol (right panel). Experimental setup includes endoscope (1), laser module (2), and CMOS camera (3). The rat is anesthetized and paralyzed. Experimental protocol includes systemic (intravenous) bolus injections of AngII in different concentrations, continuous intravenous infusion of ACh, and changing level of anesthesia.
Fig. 2
Fig. 2 Example of vessel detection based on SV data segmentation. Left panel: Mean laser speckle image. Right panel: The result of vessel detection. Purple color indicates selected vessels.
Fig. 3
Fig. 3 Vascular responses of a retinal network. (a) Intra-arterial blood pressure. Circles refer to time points for a given intervention: Red circles indicate bolus injections of AngII of 2 ng and 4 ng. Blue circles indicate the start and the end of ACh infusion. Green circles corresponds to the start and the end of increased concentration of isoflurane. (b) SV response of the two vessels V1 and V2 marked in (d) and (e) panels. (c) Diameter changes in V1 and V2 vessels. The diameter values were smoothed by using a moving average filter. (d) Delay map of blood flow velocity marks a delay of vessel response to the first AngII injection. (e) Duration map of blood flow velocity marks a duration (width at half-height) of vessel response to the first AngII injection. (f) Speckle velocity response map to Ach infusion. SV values are normalized by baseline values hence a value of 1 corresponds to no change in SV. (g) Normalized blood flow response map to Ach infusion. Color codes the strength of the response.
Fig. 4
Fig. 4 Reaction of 106 vessels to different stimuli. (a) Mean arterial pressure (MAP) and (b) maximal response of SV normalized by the baseline value for a bolus injection of AngII (2 ng), for a bolus injection of AngII (4 ng), at the first phase of ACh infusion (P1), at the second phase of ACh infusion (P2), and during increasing level of anesthesia. Different colors indicate different animals. Each symbol corresponds to an individual vessel. Dashed line indicates the level without changes.
Fig. 5
Fig. 5 Pearson product-moment correlation coefficient (PPMCC) between the response strength and vessel diameter at the baseline. A negative correlation indicates that small vessels react relatively stronger. The third group of bars is the relative response to 4 ng versus 2 ng Ang II correlated to vessel diameter. Different colors indicate different animals.
Fig. 6
Fig. 6 Examples of parent-daughter responses. (a) Parent vessel and its daughter vessels demonstrate almost the same dynamics; (b) Parent vessel demonstrates much stronger reaction on the second injection of AngII and on ACh infusion; (c) the first daughter vessel shows weaker reaction on the second AngII injection but stronger reaction on ACh infusion, while the second daughter vessel demonstrates opposite dynamics similar to the parent vessel whose response is weaker, however; (d) the first daughter vessel demonstrates reaction on both AngII injections, while the second daughter vessel does not show an increase of SV on the second injection.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SV = I 2 ¯ / σ 2 .
( SV ) line ¯ = i ( ( SV ) line i ¯ × N i N total ) ,
V map = ( SV ) R ¯ / ( SV ) B ¯ , where ( SV ) T ¯ = 1 T t T ( SV ) t , T = R , B ,
F map = ( SV ) R ¯ × D R ¯ 2 ( SV ) B ¯ × D B ¯ 2 .

Metrics