Abstract

To minimize thermal injury, the current study evaluated the real-time temperature monitoring with a proportional-integrative-derivative (PID) controller during 980-nm photothermal treatment with a radially-diffusing applicator. Both simulations and experiments demonstrated comparable thermal behaviors in temperature distribution and the degree of irreversible tissue denaturation. The PID-controlled application constantly maintained the pre-determined temperature of 353 K (steady-state error = < 1 K). Due to constant energy delivery, coagulation volumes linearly increased up to 1.04 ± 0.02 cm3 with irradiation time. Integration of temperature feedback with diffuser-assisted photothermal treatments can provide a feasible therapeutic modality to treat pancreatic tumors in an effective manner.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial effect of conical angle on optical-thermal distribution for circumferential photocoagulation

Van Gia Truong, Suhyun Park, Van Nam Tran, and Hyun Wook Kang
Biomed. Opt. Express 8(12) 5663-5674 (2017)

Circumferential irradiation for interstitial coagulation of urethral stricture

Trung Hau Nguyen, Yun-hee Rhee, Jin-chul Ahn, and Hyun Wook Kang
Opt. Express 23(16) 20829-20840 (2015)

Effect of spatial light distribution on the thermal response of vascular tissue

Van Gia Truong, Van Nam Tran, Jieun Hwang, and Hyun Wook Kang
Biomed. Opt. Express 9(7) 3037-3048 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. W. Chang and M. W. Saif, “Stereotactic body radiation therapy (SBRT) in pancreatic cancer: is it ready for prime time?” JOP 9(6), 676–682 (2008).
    [PubMed]
  2. B. W. Stewart and C. P. Wild, World Cancer Report 2014 (International Agency for Research on Cancer, Lyon Cedex, France, 2014).
  3. S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemiology of pancreatic cancer: an overview,” Nat. Rev. Gastroenterol. Hepatol. 6(12), 699–708 (2009).
    [Crossref] [PubMed]
  4. D. Yadav and A. B. Lowenfels, “The epidemiology of pancreatitis and pancreatic cancer,” Gastroenterology 144(6), 1252–1261 (2013).
    [Crossref] [PubMed]
  5. M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
    [Crossref] [PubMed]
  6. D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, “Pancreatic cancer,” Lancet 363(9414), 1049–1057 (2004).
    [Crossref] [PubMed]
  7. M. G. Keane, K. Bramis, S. P. Pereira, and G. K. Fusai, “Systematic review of novel ablative methods in locally advanced pancreatic cancer,” World J. Gastroenterol. 20(9), 2267–2278 (2014).
    [Crossref] [PubMed]
  8. R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
    [Crossref] [PubMed]
  9. G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
    [Crossref] [PubMed]
  10. K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
    [Crossref] [PubMed]
  11. M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
    [Crossref]
  12. R. Suzuki, A. Irisawa, and M. S. Bhutani, “Endoscopic Ultrasound-Guided Oncologic Therapy for Pancreatic Cancer,” Diagn. Ther. Endosc. 2013, 157581 (2013).
    [Crossref] [PubMed]
  13. P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
    [Crossref] [PubMed]
  14. D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
    [Crossref] [PubMed]
  15. T. H. Nguyen, Y. H. Rhee, J. C. Ahn, and H. W. Kang, “Circumferential irradiation for interstitial coagulation of urethral stricture,” Opt. Express 23(16), 20829–20840 (2015).
    [Crossref] [PubMed]
  16. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  17. N. M. H., Laser-tissue Interactions: Fundamentals and Applications (Springer-Verlag, 2004).
  18. M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
    [Crossref] [PubMed]
  19. M. N. Iizuka, I. A. Vitkin, M. C. Kolios, and M. D. Sherar, “The effects of dynamic optical properties during interstitial laser photocoagulation,” Phys. Med. Biol. 45(5), 1335–1357 (2000).
    [Crossref] [PubMed]
  20. J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
    [Crossref] [PubMed]
  21. E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
    [Crossref] [PubMed]
  22. Y. Feng and D. Fuentes, “Model-based planning and real-time predictive control for laser-induced thermal therapy,” Int. J. Hyperthermia 27(8), 751–761 (2011).
    [Crossref] [PubMed]
  23. L. M. Vesselov, W. Whittington, and L. Lilge, “Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications,” Lasers Surg. Med. 34(4), 348–351 (2004).
    [Crossref] [PubMed]
  24. S. C. Jiang and X. X. Zhang, “Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis,” Lasers Med. Sci. 20(3-4), 122–131 (2005).
    [Crossref] [PubMed]
  25. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28(12), 2210–2215 (1989).
    [Crossref] [PubMed]
  26. G. Yoon, A. J. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” Quantum Electronics, IEEE Journal of 23(10), 1721–1733 (1987).
    [Crossref]
  27. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
    [Crossref] [PubMed]
  28. A. Kiam Heong, G. Chong, and L. Yun, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
    [Crossref]
  29. K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
    [Crossref] [PubMed]
  30. Y. Mohammed and J. F. Verhey, “A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions,” Biomed. Eng. Online 4(1), 2 (2005).
    [Crossref] [PubMed]
  31. J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
    [Crossref] [PubMed]
  32. S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
    [Crossref] [PubMed]
  33. A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
    [Crossref] [PubMed]
  34. A. J. Welch and M. J. C. van Gemert, Optical-thermal Response of Laser-Irradiated Tissue (Plenum Press, 1995).

2015 (1)

2014 (2)

M. G. Keane, K. Bramis, S. P. Pereira, and G. K. Fusai, “Systematic review of novel ablative methods in locally advanced pancreatic cancer,” World J. Gastroenterol. 20(9), 2267–2278 (2014).
[Crossref] [PubMed]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

2013 (4)

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

D. Yadav and A. B. Lowenfels, “The epidemiology of pancreatitis and pancreatic cancer,” Gastroenterology 144(6), 1252–1261 (2013).
[Crossref] [PubMed]

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

R. Suzuki, A. Irisawa, and M. S. Bhutani, “Endoscopic Ultrasound-Guided Oncologic Therapy for Pancreatic Cancer,” Diagn. Ther. Endosc. 2013, 157581 (2013).
[Crossref] [PubMed]

2012 (1)

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Feng and D. Fuentes, “Model-based planning and real-time predictive control for laser-induced thermal therapy,” Int. J. Hyperthermia 27(8), 751–761 (2011).
[Crossref] [PubMed]

2010 (3)

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
[Crossref] [PubMed]

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

2009 (2)

S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemiology of pancreatic cancer: an overview,” Nat. Rev. Gastroenterol. Hepatol. 6(12), 699–708 (2009).
[Crossref] [PubMed]

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

2008 (2)

B. W. Chang and M. W. Saif, “Stereotactic body radiation therapy (SBRT) in pancreatic cancer: is it ready for prime time?” JOP 9(6), 676–682 (2008).
[PubMed]

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

2007 (1)

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

2005 (3)

S. C. Jiang and X. X. Zhang, “Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis,” Lasers Med. Sci. 20(3-4), 122–131 (2005).
[Crossref] [PubMed]

Y. Mohammed and J. F. Verhey, “A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions,” Biomed. Eng. Online 4(1), 2 (2005).
[Crossref] [PubMed]

A. Kiam Heong, G. Chong, and L. Yun, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

2004 (2)

D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, “Pancreatic cancer,” Lancet 363(9414), 1049–1057 (2004).
[Crossref] [PubMed]

L. M. Vesselov, W. Whittington, and L. Lilge, “Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications,” Lasers Surg. Med. 34(4), 348–351 (2004).
[Crossref] [PubMed]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

2001 (2)

A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
[Crossref] [PubMed]

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

2000 (1)

M. N. Iizuka, I. A. Vitkin, M. C. Kolios, and M. D. Sherar, “The effects of dynamic optical properties during interstitial laser photocoagulation,” Phys. Med. Biol. 45(5), 1335–1357 (2000).
[Crossref] [PubMed]

1993 (1)

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

1989 (1)

1987 (2)

G. Yoon, A. J. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” Quantum Electronics, IEEE Journal of 23(10), 1721–1733 (1987).
[Crossref]

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

1983 (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Abbruzzese, J. L.

D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, “Pancreatic cancer,” Lancet 363(9414), 1049–1057 (2004).
[Crossref] [PubMed]

Adam, G.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Adedipe, A.

A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
[Crossref] [PubMed]

Ahn, J. C.

Ahrar, J. U.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Ahrar, K.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Anderson, R. R.

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

Bachmann, A.

M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
[Crossref] [PubMed]

Barbi, E.

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

Bassi, C.

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

Bhutani, M. S.

R. Suzuki, A. Irisawa, and M. S. Bhutani, “Endoscopic Ultrasound-Guided Oncologic Therapy for Pancreatic Cancer,” Diagn. Ther. Endosc. 2013, 157581 (2013).
[Crossref] [PubMed]

Borne, A.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Bown, S. G.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Bramis, K.

M. G. Keane, K. Bramis, S. P. Pereira, and G. K. Fusai, “Systematic review of novel ablative methods in locally advanced pancreatic cancer,” World J. Gastroenterol. 20(9), 2267–2278 (2014).
[Crossref] [PubMed]

Braschi, G.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Buhr, H. J.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

Burns, J. A.

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

Busca, G.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Caponero, M. A.

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

Carlin, M.

A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
[Crossref] [PubMed]

Carrafiello, G.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Chang, B. W.

B. W. Chang and M. W. Saif, “Stereotactic body radiation therapy (SBRT) in pancreatic cancer: is it ready for prime time?” JOP 9(6), 676–682 (2008).
[PubMed]

Chong, G.

A. Kiam Heong, G. Chong, and L. Yun, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

Cigada, A.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Cuffari, S.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Dachman, A. H.

A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
[Crossref] [PubMed]

Di Matteo, F. M.

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

Diller, K. R.

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

Dionigi, G.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Elliott, A.

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

Feng, Y.

Y. Feng and D. Fuentes, “Model-based planning and real-time predictive control for laser-induced thermal therapy,” Int. J. Hyperthermia 27(8), 751–761 (2011).
[Crossref] [PubMed]

Floridi, C.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Fontana, F.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Fox, M.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Frigerio, I.

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

Fuentes, D.

Y. Feng and D. Fuentes, “Model-based planning and real-time predictive control for laser-induced thermal therapy,” Int. J. Hyperthermia 27(8), 751–761 (2011).
[Crossref] [PubMed]

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

Fugazzola, C.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Fusai, G. K.

M. G. Keane, K. Bramis, S. P. Pereira, and G. K. Fusai, “Systematic review of novel ablative methods in locally advanced pancreatic cancer,” World J. Gastroenterol. 20(9), 2267–2278 (2014).
[Crossref] [PubMed]

Gallati, M.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Gemert, M.

G. Yoon, A. J. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” Quantum Electronics, IEEE Journal of 23(10), 1721–1733 (1987).
[Crossref]

Germer, C. T.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

Gillams, A.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Girelli, R.

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

Gowda, A.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Hasan, T.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Hazle, J. D.

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

He, W. B.

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

He, Y. S.

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

Heaton, J. T.

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

Hu, Y. Z.

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

Huggett, M. T.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Ierardi, A. M.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Iizuka, M. N.

M. N. Iizuka, I. A. Vitkin, M. C. Kolios, and M. D. Sherar, “The effects of dynamic optical properties during interstitial laser photocoagulation,” Phys. Med. Biol. 45(5), 1335–1357 (2000).
[Crossref] [PubMed]

Irisawa, A.

R. Suzuki, A. Irisawa, and M. S. Bhutani, “Endoscopic Ultrasound-Guided Oncologic Therapy for Pancreatic Cancer,” Diagn. Ther. Endosc. 2013, 157581 (2013).
[Crossref] [PubMed]

Isbert, C.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

Ishimaru, A.

Jacques, S. L.

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

Javadi, S.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Jermyn, M.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Jiang, S. C.

S. C. Jiang and X. X. Zhang, “Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis,” Lasers Med. Sci. 20(3-4), 122–131 (2005).
[Crossref] [PubMed]

Kang, H. W.

T. H. Nguyen, Y. H. Rhee, J. C. Ahn, and H. W. Kang, “Circumferential irradiation for interstitial coagulation of urethral stricture,” Opt. Express 23(16), 20829–20840 (2015).
[Crossref] [PubMed]

M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
[Crossref] [PubMed]

Kayahara, M.

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

Keane, M. G.

M. G. Keane, K. Bramis, S. P. Pereira, and G. K. Fusai, “Systematic review of novel ablative methods in locally advanced pancreatic cancer,” World J. Gastroenterol. 20(9), 2267–2278 (2014).
[Crossref] [PubMed]

Kent, E.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Kiam Heong, A.

A. Kiam Heong, G. Chong, and L. Yun, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

Kobler, J. B.

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

Kolios, M. C.

M. N. Iizuka, I. A. Vitkin, M. C. Kolios, and M. D. Sherar, “The effects of dynamic optical properties during interstitial laser photocoagulation,” Phys. Med. Biol. 45(5), 1335–1357 (2000).
[Crossref] [PubMed]

Koullick, E.

M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
[Crossref] [PubMed]

Lewis, E.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Li, D.

D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, “Pancreatic cancer,” Lancet 363(9414), 1049–1057 (2004).
[Crossref] [PubMed]

Lilge, L.

L. M. Vesselov, W. Whittington, and L. Lilge, “Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications,” Lasers Surg. Med. 34(4), 348–351 (2004).
[Crossref] [PubMed]

Lopez-Guerra, G.

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

Lowenfels, A. B.

D. Yadav and A. B. Lowenfels, “The epidemiology of pancreatitis and pancreatic cancer,” Gastroenterology 144(6), 1252–1261 (2013).
[Crossref] [PubMed]

S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemiology of pancreatic cancer: an overview,” Nat. Rev. Gastroenterol. Hepatol. 6(12), 699–708 (2009).
[Crossref] [PubMed]

Lucchina, N.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Macchi, E. G.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

MacEneaney, P. M.

A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
[Crossref] [PubMed]

Maisonneuve, P.

S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemiology of pancreatic cancer: an overview,” Nat. Rev. Gastroenterol. Hepatol. 6(12), 699–708 (2009).
[Crossref] [PubMed]

Martino, M.

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

McNichols, R.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Miyazaki, I.

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

Mohammed, Y.

Y. Mohammed and J. F. Verhey, “A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions,” Biomed. Eng. Online 4(1), 2 (2005).
[Crossref] [PubMed]

Mosse, S.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Motamedi, M.

G. Yoon, A. J. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” Quantum Electronics, IEEE Journal of 23(10), 1721–1733 (1987).
[Crossref]

Müller, G.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

Nagakawa, T.

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

Nguyen, T. H.

Niu, L. Z.

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

Oden, J. T.

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

Ohta, T.

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

Pandolfi, M.

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

Pereira, S. P.

M. G. Keane, K. Bramis, S. P. Pereira, and G. K. Fusai, “Systematic review of novel ablative methods in locally advanced pancreatic cancer,” World J. Gastroenterol. 20(9), 2267–2278 (2014).
[Crossref] [PubMed]

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Petrillo, M.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Pogue, B. W.

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Prahl, S. A.

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

Raimondi, S.

S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemiology of pancreatic cancer: an overview,” Nat. Rev. Gastroenterol. Hepatol. 6(12), 699–708 (2009).
[Crossref] [PubMed]

Rhee, Y. H.

Rieken, M.

M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
[Crossref] [PubMed]

Ritz, J. P.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

Roggan, A.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

Rotondo, A.

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

Ruth, G. R.

M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
[Crossref] [PubMed]

Saccomandi, P.

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

Saif, M. W.

B. W. Chang and M. W. Saif, “Stereotactic body radiation therapy (SBRT) in pancreatic cancer: is it ready for prime time?” JOP 9(6), 676–682 (2008).
[PubMed]

Salvia, R.

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

Schena, E.

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

Schumm, L. P.

A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
[Crossref] [PubMed]

Sherar, M. D.

M. N. Iizuka, I. A. Vitkin, M. C. Kolios, and M. D. Sherar, “The effects of dynamic optical properties during interstitial laser photocoagulation,” Phys. Med. Biol. 45(5), 1335–1357 (2000).
[Crossref] [PubMed]

Shetty, A.

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

Silvestri, S.

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

Stafford, R. J.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

Stephens, C.

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

Suzuki, R.

R. Suzuki, A. Irisawa, and M. S. Bhutani, “Endoscopic Ultrasound-Guided Oncologic Therapy for Pancreatic Cancer,” Diagn. Ther. Endosc. 2013, 157581 (2013).
[Crossref] [PubMed]

Takeda, T.

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

Tinazzi Martini, P.

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

Tosi, D.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Ueno, K.

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Verhey, J. F.

Y. Mohammed and J. F. Verhey, “A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions,” Biomed. Eng. Online 4(1), 2 (2005).
[Crossref] [PubMed]

Vesselov, L. M.

L. M. Vesselov, W. Whittington, and L. Lilge, “Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications,” Lasers Surg. Med. 34(4), 348–351 (2004).
[Crossref] [PubMed]

Vitkin, I. A.

M. N. Iizuka, I. A. Vitkin, M. C. Kolios, and M. D. Sherar, “The effects of dynamic optical properties during interstitial laser photocoagulation,” Phys. Med. Biol. 45(5), 1335–1357 (2000).
[Crossref] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Welch, A. J.

G. Yoon, A. J. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” Quantum Electronics, IEEE Journal of 23(10), 1721–1733 (1987).
[Crossref]

Whittington, W.

L. M. Vesselov, W. Whittington, and L. Lilge, “Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications,” Lasers Surg. Med. 34(4), 348–351 (2004).
[Crossref] [PubMed]

Wilson, B. C.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Wolff, R.

D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, “Pancreatic cancer,” Lancet 363(9414), 1049–1057 (2004).
[Crossref] [PubMed]

Xie, K.

D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, “Pancreatic cancer,” Lancet 363(9414), 1049–1057 (2004).
[Crossref] [PubMed]

Xu, K. C.

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

Yadav, D.

D. Yadav and A. B. Lowenfels, “The epidemiology of pancreatitis and pancreatic cancer,” Gastroenterology 144(6), 1252–1261 (2013).
[Crossref] [PubMed]

Yoon, G.

G. Yoon, A. J. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” Quantum Electronics, IEEE Journal of 23(10), 1721–1733 (1987).
[Crossref]

Yun, L.

A. Kiam Heong, G. Chong, and L. Yun, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

Zeitels, S. M.

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

Zhang, X. X.

S. C. Jiang and X. X. Zhang, “Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis,” Lasers Med. Sci. 20(3-4), 122–131 (2005).
[Crossref] [PubMed]

Zuo, J. S.

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

D. Fuentes, J. T. Oden, K. R. Diller, J. D. Hazle, A. Elliott, A. Shetty, and R. J. Stafford, “Computational modeling and real-time control of patient-specific laser treatment of cancer,” Ann. Biomed. Eng. 37(4), 763–782 (2009).
[Crossref] [PubMed]

Ann. Otol. Rhinol. Laryngol. (1)

J. A. Burns, J. B. Kobler, J. T. Heaton, G. Lopez-Guerra, R. R. Anderson, and S. M. Zeitels, “Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study,” Ann. Otol. Rhinol. Laryngol. 116(11), 853–857 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Eng. Online (1)

Y. Mohammed and J. F. Verhey, “A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions,” Biomed. Eng. Online 4(1), 2 (2005).
[Crossref] [PubMed]

Br. J. Surg. (1)

R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” Br. J. Surg. 97(2), 220–225 (2010).
[Crossref] [PubMed]

Cancer (2)

M. Kayahara, T. Nagakawa, K. Ueno, T. Ohta, T. Takeda, and I. Miyazaki, “An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging,” Cancer 72(7), 2118–2123 (1993).
[Crossref] [PubMed]

A. H. Dachman, P. M. MacEneaney, A. Adedipe, M. Carlin, and L. P. Schumm, “Tumor size on computed tomography scans: is one measurement enough?” Cancer 91(3), 555–560 (2001).
[Crossref] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Diagn. Ther. Endosc. (1)

R. Suzuki, A. Irisawa, and M. S. Bhutani, “Endoscopic Ultrasound-Guided Oncologic Therapy for Pancreatic Cancer,” Diagn. Ther. Endosc. 2013, 157581 (2013).
[Crossref] [PubMed]

Gastroenterology (1)

D. Yadav and A. B. Lowenfels, “The epidemiology of pancreatitis and pancreatic cancer,” Gastroenterology 144(6), 1252–1261 (2013).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

P. Saccomandi, E. Schena, M. A. Caponero, F. M. Di Matteo, M. Martino, M. Pandolfi, and S. Silvestri, “Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas,” IEEE Trans. Biomed. Eng. 59(10), 2958–2964 (2012).
[Crossref] [PubMed]

IEEE Trans. Contr. Syst. Technol. (1)

A. Kiam Heong, G. Chong, and L. Yun, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

Int. J. Hyperthermia (1)

Y. Feng and D. Fuentes, “Model-based planning and real-time predictive control for laser-induced thermal therapy,” Int. J. Hyperthermia 27(8), 751–761 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

J. Dig. Dis. (1)

K. C. Xu, L. Z. Niu, Y. Z. Hu, W. B. He, Y. S. He, and J. S. Zuo, “Cryosurgery with combination of (125)iodine seed implantation for the treatment of locally advanced pancreatic cancer,” J. Dig. Dis. 9(1), 32–40 (2008).
[Crossref] [PubMed]

J. Vasc. Interv. Radiol. (2)

G. Carrafiello, A. M. Ierardi, F. Fontana, M. Petrillo, C. Floridi, N. Lucchina, S. Cuffari, G. Dionigi, A. Rotondo, and C. Fugazzola, “Microwave ablation of pancreatic head cancer: safety and efficacy,” J. Vasc. Interv. Radiol. 24(10), 1513–1520 (2013).
[Crossref] [PubMed]

K. Ahrar, A. Gowda, S. Javadi, A. Borne, M. Fox, R. McNichols, J. U. Ahrar, C. Stephens, and R. J. Stafford, “Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model,” J. Vasc. Interv. Radiol. 21(4), 555–561 (2010).
[Crossref] [PubMed]

JOP (1)

B. W. Chang and M. W. Saif, “Stereotactic body radiation therapy (SBRT) in pancreatic cancer: is it ready for prime time?” JOP 9(6), 676–682 (2008).
[PubMed]

Lancet (1)

D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, “Pancreatic cancer,” Lancet 363(9414), 1049–1057 (2004).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

S. C. Jiang and X. X. Zhang, “Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis,” Lasers Med. Sci. 20(3-4), 122–131 (2005).
[Crossref] [PubMed]

Lasers Surg. Med. (4)

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).
[Crossref] [PubMed]

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

M. Rieken, H. W. Kang, E. Koullick, G. R. Ruth, and A. Bachmann, “Laser vaporization of the prostate in vivo: Experience with the 150-W 980-nm diode laser in living canines,” Lasers Surg. Med. 42(8), 736–742 (2010).
[Crossref] [PubMed]

L. M. Vesselov, W. Whittington, and L. Lilge, “Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications,” Lasers Surg. Med. 34(4), 348–351 (2004).
[Crossref] [PubMed]

Med. Phys. (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Nat. Rev. Gastroenterol. Hepatol. (1)

S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemiology of pancreatic cancer: an overview,” Nat. Rev. Gastroenterol. Hepatol. 6(12), 699–708 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Pancreatology (1)

M. T. Huggett, M. Jermyn, A. Gillams, S. Mosse, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, and S. P. Pereira, “Photodynamic therapy for locally advanced pancreatic cancer (vertpac study)- final clinical results,” Pancreatology 13(1), e2–e3 (2013).
[Crossref]

Phys. Med. Biol. (1)

M. N. Iizuka, I. A. Vitkin, M. C. Kolios, and M. D. Sherar, “The effects of dynamic optical properties during interstitial laser photocoagulation,” Phys. Med. Biol. 45(5), 1335–1357 (2000).
[Crossref] [PubMed]

Quantum Electronics, IEEE Journal of (1)

G. Yoon, A. J. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” Quantum Electronics, IEEE Journal of 23(10), 1721–1733 (1987).
[Crossref]

World J. Gastroenterol. (1)

M. G. Keane, K. Bramis, S. P. Pereira, and G. K. Fusai, “Systematic review of novel ablative methods in locally advanced pancreatic cancer,” World J. Gastroenterol. 20(9), 2267–2278 (2014).
[Crossref] [PubMed]

Other (3)

B. W. Stewart and C. P. Wild, World Cancer Report 2014 (International Agency for Research on Cancer, Lyon Cedex, France, 2014).

N. M. H., Laser-tissue Interactions: Fundamentals and Applications (Springer-Verlag, 2004).

A. J. Welch and M. J. C. van Gemert, Optical-thermal Response of Laser-Irradiated Tissue (Plenum Press, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Evaluations on diffusing optical applicator: (a) microscopic image, (b) polar emissions, and (c) longitudinal emissions. A red line represents the curve fitting (P = proximal and D = distal ends)
Fig. 2
Fig. 2 Schematic illustrations on (a) geometry for numerical simulations and (b) experimental set-up for tissue testing under CW, pulsed, and PID-controlled modes
Fig. 3
Fig. 3 Numerical analysis on spatial temperature distribution (top) and thermal coagulation (bottom) after 30-s irradiation at 10 W: (a) CW, (b) pulsed, and (c) PID-controlled modes. Note that a gray contour represents 373 K temperature for carbonization threshold. (P = proximal and D = distal ends)
Fig. 4
Fig. 4 Simulated temperature distribution for PID-controlled application at 10 W: (a) cross-sectional view of temperature at z = 6.5 mm from proximal end of diffuser after 100-s irradiation and (b) temporal development of temperature at various radial distance (0.7, 3, and 6 mm) from axis of diffuser (irradiation time = 100 s).
Fig. 5
Fig. 5 Temporal developments of temperature at tissue-glass cap interface for CW, pulsed, and PID controlled applications during and after 10-W laser irradiation (irradiation times = 30 s for CW and pulsed and 100 s for PID-controlled): (a) numerical simulations and (b) experiments. Note that the PID-controlled temperature was set at 353 K during the irradiation.
Fig. 6
Fig. 6 Comparison of power modulation during 10-W laser irradiation for 250 s: (a) numerical simulations and (b) experiments
Fig. 7
Fig. 7 Comparison of thermal denaturation regions between theoretical and experimental results with PID-controlled application after irradiation times of (a) 100 s, (b) 300 s, and (c) 600 s at 10 W (P = proximal and D = distal ends)
Fig. 8
Fig. 8 Quantification on coagulation volume as function of irradiation time for numerical simulations and experiments under 10-W irradiation with PID-controlled application.

Tables (2)

Tables Icon

Table 1 Thermal properties of materials used in numerical simulations

Tables Icon

Table 2 Physical parameters of liver tissue used for thermal damage model

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I(d)= I 0 e μ t d
ρc T t +(kT)= ρ b c b ω b ( T b T)+ Q met + Q ext
I 0 ( d l )=2.1× 10 9 d l 4 +4.5× 10 7 d l 3 343370 d l 2 +1044 d l 0.09
I l ( d l )=K I 0 ( d l )
K I 0 ( d l )dA= P 1
Q ext = μ a I l e μ a r
Q ext = μ a P 2 2π σ 2 e r 2 σ 2 e μ a z
u(t)= K p e(t)+ K i 0 t e(τ)dτ+ K d d dt e(t)
Ω(r,t)= A f 0 τ exp( E a RT(r,t) )dt
μ eff = 3 μ a [ μ a + μ s (1g)]
μ a = μ a,native f u + μ a,coagulative f d
μ s = μ s,native f u + μ s,coagulative f d
g= g native f u + g coagulative f d
ρ(T)=1000(1.30.3 k p w)
c(T)=4190(0.4+0.6 k c w)
k(T)=0.4(0.1+1.4 k k w)
k ρ =14.98× 10 4 (T20)
k c =1+1.02× 10 4 (T20)
k k =1+1.78× 10 3 (T20)
V= 4π 3 x 2 y 2 z 2

Metrics