Abstract

It is known that the progression of oral cancer is accompanied by changes in both tissue biochemistry and morphology. A multimodal imaging approach combining functional and structural imaging modalities could therefore provide a more comprehensive prognosis of oral cancer. This idea forms the central theme of the current study, wherein this premise is examined in the context of a multimodal imaging system that combines fluorescence lifetime imaging (FLIM) and optical coherence tomography (OCT). Towards this end, in the first part of the present study, the diagnostic advantage obtained by using both fluorescence intensity and lifetime information is assessed. In the second part of the study, the diagnostic potential of FLIM-derived biochemical features is compared with that of OCT-derived morphological features. For an objective assessment, several quantitative biochemical and morphological features from FLIM and OCT data, respectively, were obtained using signal and image processing techniques. These features were subsequently used in a statistical classification framework to quantify the diagnostic potential of different features. The classification accuracy for combined FLIM and OCT features was estimated to be 87.4%, which was statistically higher than accuracy based on only FLIM (83.2%) or OCT (81.0%) features. Moreover, the complimentary information provided by FLIM and OCT features, resulted in highest sensitivity and specificity for the combined FLIM and OCT features for discriminating benign (88.2% sens., 92.0% spec.), pre-cancerous (81.5% sens., 96.0% spec.), and cancerous (90.1% sens., 92.0% spec.) classes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques

Hussain Fatakdawala, Shannon Poti, Feifei Zhou, Yang Sun, Julien Bec, Jing Liu, Diego R. Yankelevich, Steven P. Tinling, Regina F. Gandour-Edwards, D. Gregory Farwell, and Laura Marcu
Biomed. Opt. Express 4(9) 1724-1741 (2013)

Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence

Sebina Shrestha, Michael J. Serafino, Jesus Rico-Jimenez, Jesung Park, Xi Chen, Siqin Zhaorigetu, Brian L. Walton, Javier A. Jo, and Brian E. Applegate
Biomed. Opt. Express 7(9) 3184-3197 (2016)

A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization

Jesung Park, Javier A. Jo, Sebina Shrestha, Paritosh Pande, Qiujie Wan, and Brian E. Applegate
Biomed. Opt. Express 1(1) 186-200 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).
  2. L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
    [Crossref]
  3. V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).
    [Crossref] [PubMed]
  4. M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
    [Crossref] [PubMed]
  5. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
    [Crossref] [PubMed]
  6. P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
    [Crossref] [PubMed]
  7. E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
    [Crossref] [PubMed]
  8. P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
    [Crossref] [PubMed]
  9. P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
    [Crossref] [PubMed]
  10. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [Crossref] [PubMed]
  11. M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
    [Crossref] [PubMed]
  12. P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
    [Crossref] [PubMed]
  13. P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
    [Crossref] [PubMed]
  14. J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).
    [Crossref]
  15. X. Tang, “Texture information in run-length matrices,” IEEE Trans. Image Process. 7, 1602–1609 (1998).
    [Crossref]
  16. A. Criminisi, “Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning,” Foundations and Trends in Computer Graphics and Vision 7, 81–227 (2011).
    [Crossref]
  17. J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res. 7, 1–30 (2006).
  18. D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
    [Crossref] [PubMed]
  19. M. W. Lingen, J. R. Kalmar, T. Karrison, and P. M. Speight, “Critical evaluation of diagnostic aids for the detection of oral cancer,” Oral Oncol. 44, 10–22 (2008).
    [Crossref]
  20. R. Mehrotra and D. K. Gupta, “Exciting new advances in oral cancer diagnosis: avenues to early detection,” Head Neck Oncol. 3, 1–9 (2011).
    [Crossref]
  21. A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
    [Crossref] [PubMed]
  22. D. De Veld, M. Witjes, H. Sterenborg, and J. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41, 117–131 (2005).
    [Crossref] [PubMed]
  23. I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
    [Crossref] [PubMed]
  24. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
    [Crossref] [PubMed]
  25. J. E. Bouquot and R. J. Gorlin, “Leukoplakia, lichen planus, and other oral keratoses in 23,616 white americans over the age of 35 years,” Oral Surg., Oral Med., Oral Pathol. 61, 373–381 (1986).
    [Crossref]
  26. B. W. Neville and T. A. Day, “Oral cancer and precancerous lesions,” Ca-Cancer J. Clin. 52, 195–215 (2002).
    [Crossref] [PubMed]
  27. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
    [Crossref] [PubMed]
  28. Y. Wu, P. Xi, J. Qu, T.-H. Cheung, and M.-Y. Yu, “Depth-resolved fluorescence spectroscopy reveals layered structure of tissue,” Opt. Express 12, 3218–3223 (2004).
    [Crossref] [PubMed]
  29. Y. Wu and J. Y. Qu, “Combined depth-and time-resolved autofluorescence spectroscopy of epithelial tissue,” Opt. Lett. 31, 1833–1835 (2006).
    [Crossref] [PubMed]

2014 (1)

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

2011 (2)

A. Criminisi, “Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning,” Foundations and Trends in Computer Graphics and Vision 7, 81–227 (2011).
[Crossref]

R. Mehrotra and D. K. Gupta, “Exciting new advances in oral cancer diagnosis: avenues to early detection,” Head Neck Oncol. 3, 1–9 (2011).
[Crossref]

2010 (2)

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).
[Crossref]

2009 (1)

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

2008 (2)

M. W. Lingen, J. R. Kalmar, T. Karrison, and P. M. Speight, “Critical evaluation of diagnostic aids for the detection of oral cancer,” Oral Oncol. 44, 10–22 (2008).
[Crossref]

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
[Crossref] [PubMed]

2007 (1)

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

2006 (2)

J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res. 7, 1–30 (2006).

Y. Wu and J. Y. Qu, “Combined depth-and time-resolved autofluorescence spectroscopy of epithelial tissue,” Opt. Lett. 31, 1833–1835 (2006).
[Crossref] [PubMed]

2005 (5)

D. De Veld, M. Witjes, H. Sterenborg, and J. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41, 117–131 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).
[Crossref] [PubMed]

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

2004 (3)

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

Y. Wu, P. Xi, J. Qu, T.-H. Cheung, and M.-Y. Yu, “Depth-resolved fluorescence spectroscopy reveals layered structure of tissue,” Opt. Express 12, 3218–3223 (2004).
[Crossref] [PubMed]

2003 (2)

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

2002 (1)

B. W. Neville and T. A. Day, “Oral cancer and precancerous lesions,” Ca-Cancer J. Clin. 52, 195–215 (2002).
[Crossref] [PubMed]

2001 (1)

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

1998 (2)

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

X. Tang, “Texture information in run-length matrices,” IEEE Trans. Image Process. 7, 1602–1609 (1998).
[Crossref]

1996 (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

1995 (1)

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

1986 (1)

J. E. Bouquot and R. J. Gorlin, “Leukoplakia, lichen planus, and other oral keratoses in 23,616 white americans over the age of 35 years,” Oral Surg., Oral Med., Oral Pathol. 61, 373–381 (1986).
[Crossref]

Abbadi, N. E.

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

Abbey, L. M.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Altekruse, S.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Aminou, R.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Applegate, B. E.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).
[Crossref]

Backman, V.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Biener, E.

V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).
[Crossref] [PubMed]

Bird, D. K.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

Boiko, I.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Boone, C. W.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Bouquot, J. E.

J. E. Bouquot and R. J. Gorlin, “Leukoplakia, lichen planus, and other oral keratoses in 23,616 white americans over the age of 35 years,” Oral Surg., Oral Med., Oral Pathol. 61, 373–381 (1986).
[Crossref]

Brandon, J.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

Brenner, M.

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

Brookner, C.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Burns, J. C.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Chen, Z.

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

Cheng, Y.-S.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

Cheung, T.-H.

Cho, H.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Clayman, G.

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Coffman, H.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Criminisi, A.

A. Criminisi, “Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning,” Foundations and Trends in Computer Graphics and Vision 7, 81–227 (2011).
[Crossref]

Cushing, M.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Dasari, R. R.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Day, T. A.

B. W. Neville and T. A. Day, “Oral cancer and precancerous lesions,” Ca-Cancer J. Clin. 52, 195–215 (2002).
[Crossref] [PubMed]

De Veld, D.

D. De Veld, M. Witjes, H. Sterenborg, and J. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41, 117–131 (2005).
[Crossref] [PubMed]

Demšar, J.

J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res. 7, 1–30 (2006).

Drezek, R.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Eickhoff, J.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

Eickhoff, J. C.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

Eisenberg, E.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Eliceiri, K. W.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

El-Naggar, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
[Crossref] [PubMed]

El-Naggar, A. K.

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Enepekides, D. J.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Farwell, D. G.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Follen, M.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Fuentes, C.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Ganeshappa, R.

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

Georgakoudi, I.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Gillenwater, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
[Crossref] [PubMed]

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Gimenez-Conti, I.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

Gorlin, R. J.

J. E. Bouquot and R. J. Gorlin, “Leukoplakia, lichen planus, and other oral keratoses in 23,616 white americans over the age of 35 years,” Oral Surg., Oral Med., Oral Pathol. 61, 373–381 (1986).
[Crossref]

Gunsolley, J. C.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Guo, S.

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

Gupta, D. K.

R. Mehrotra and D. K. Gupta, “Exciting new advances in oral cancer diagnosis: avenues to early detection,” Head Neck Oncol. 3, 1–9 (2011).
[Crossref]

Hanna, N.

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

Hanna, N. M.

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

Herman, B.

V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).
[Crossref] [PubMed]

Howlader, N.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Jacob, R.

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Jo, J. A.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).
[Crossref]

Jung, W.

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

Jung, W.-G.

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

Kabani, S.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Kalmar, J. R.

M. W. Lingen, J. R. Kalmar, T. Karrison, and P. M. Speight, “Critical evaluation of diagnostic aids for the detection of oral cancer,” Oral Oncol. 44, 10–22 (2008).
[Crossref]

Karrison, T.

M. W. Lingen, J. R. Kalmar, T. Karrison, and P. M. Speight, “Critical evaluation of diagnostic aids for the detection of oral cancer,” Oral Oncol. 44, 10–22 (2008).
[Crossref]

Kaugars, G. E.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Keely, P. J.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

Kemp, B.

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Kosary, C.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Krapcho, M.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Krasieva, T.

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

Krutchkoff, D. J.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Laver, N.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Lee, K.

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

Lingen, M. W.

M. W. Lingen, J. R. Kalmar, T. Karrison, and P. M. Speight, “Critical evaluation of diagnostic aids for the detection of oral cancer,” Oral Oncol. 44, 10–22 (2008).
[Crossref]

Lotan, R.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Malpica, A.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Marcu, L.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Matheny, E. S.

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

Mehrotra, R.

R. Mehrotra and D. K. Gupta, “Exciting new advances in oral cancer diagnosis: avenues to early detection,” Head Neck Oncol. 3, 1–9 (2011).
[Crossref]

Meier, J. D.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Messadi, D.

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

Mina-Araghi, R.

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

Mitchell, M. F.

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Müller, M. G.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Neville, B. W.

B. W. Neville and T. A. Day, “Oral cancer and precancerous lesions,” Ca-Cancer J. Clin. 52, 195–215 (2002).
[Crossref] [PubMed]

Neyman, N.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Noone, A.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Osann, K.

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

Page, D. G.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Palmer, J. L.

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Pande, P.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).
[Crossref]

Park, J.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).
[Crossref]

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Pavlova, I.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Phipps, J.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Poirier, B.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Qu, J.

Qu, J. Y.

Ramanujam, N.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

Ramanujan, V. K.

V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).
[Crossref] [PubMed]

Richards-Kortum, R.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

Riching, K. M.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

Roodenburg, J.

D. De Veld, M. Witjes, H. Sterenborg, and J. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41, 117–131 (2005).
[Crossref] [PubMed]

Ruhl, J.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Serafino, M. J.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

Shrestha, S.

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).
[Crossref]

Skala, M. C.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

Sokolov, K.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

Speight, P. M.

M. W. Lingen, J. R. Kalmar, T. Karrison, and P. M. Speight, “Critical evaluation of diagnostic aids for the detection of oral cancer,” Oral Oncol. 44, 10–22 (2008).
[Crossref]

Squirrell, J. M.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

Sterenborg, H.

D. De Veld, M. Witjes, H. Sterenborg, and J. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41, 117–131 (2005).
[Crossref] [PubMed]

Sun, Y.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Svirsky, J. A.

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Tang, X.

X. Tang, “Texture information in run-length matrices,” IEEE Trans. Image Process. 7, 1602–1609 (1998).
[Crossref]

Tatalovich, Z.

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Tinling, S.

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

Tromberg, B.

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

Valdez, T. A.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Vrotsos, K. M.

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

Wan, Q.

Wang, Z.

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Wilder-Smith, P.

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

Williams, M.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
[Crossref] [PubMed]

Witjes, M.

D. De Veld, M. Witjes, H. Sterenborg, and J. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41, 117–131 (2005).
[Crossref] [PubMed]

Wu, Y.

Xi, P.

Yu, M.-Y.

Zhang, J.

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

Zhang, J.-H.

V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

Arch. Otolaryngol. Head Neck Surg. (2)

D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136, 126–133 (2010).
[Crossref] [PubMed]

A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251–1258 (1998).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Ca-Cancer J. Clin. (1)

B. W. Neville and T. A. Day, “Oral cancer and precancerous lesions,” Ca-Cancer J. Clin. 52, 195–215 (2002).
[Crossref] [PubMed]

Cancer (1)

M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, and R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681–1692 (2003).
[Crossref] [PubMed]

Cancer Res. (1)

M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14, 2396–2404 (2008).
[Crossref] [PubMed]

Foundations and Trends in Computer Graphics and Vision (1)

A. Criminisi, “Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning,” Foundations and Trends in Computer Graphics and Vision 7, 81–227 (2011).
[Crossref]

Head Neck Oncol. (1)

R. Mehrotra and D. K. Gupta, “Exciting new advances in oral cancer diagnosis: avenues to early detection,” Head Neck Oncol. 3, 1–9 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

X. Tang, “Texture information in run-length matrices,” IEEE Trans. Image Process. 7, 1602–1609 (1998).
[Crossref]

J. Biomed. Opt. (6)

V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).
[Crossref] [PubMed]

E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).
[Crossref] [PubMed]

P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).
[Crossref] [PubMed]

P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and J. A. Jo, “Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).
[Crossref] [PubMed]

J. Mach. Learn. Res. (1)

J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res. 7, 1–30 (2006).

Lasers Surg. Med. (2)

P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med. 41, 353–357 (2009).
[Crossref] [PubMed]

P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Oral Oncol. (2)

D. De Veld, M. Witjes, H. Sterenborg, and J. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41, 117–131 (2005).
[Crossref] [PubMed]

M. W. Lingen, J. R. Kalmar, T. Karrison, and P. M. Speight, “Critical evaluation of diagnostic aids for the detection of oral cancer,” Oral Oncol. 44, 10–22 (2008).
[Crossref]

Oral Surg., Oral Med., Oral Pathol. (1)

J. E. Bouquot and R. J. Gorlin, “Leukoplakia, lichen planus, and other oral keratoses in 23,616 white americans over the age of 35 years,” Oral Surg., Oral Med., Oral Pathol. 61, 373–381 (1986).
[Crossref]

Oral Surg., Oral Med., Oral Pathol. Endodontol. (1)

L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff, and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).
[Crossref]

Photochem. Photobiol. (2)

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[Crossref] [PubMed]

Other (1)

N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich, and H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” National Cancer InstituteBethesda, MD (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Multimodal optical system for simultaneous co-registered OCT and FLIM imaging. The OCT beam is shown in red, the FLIM excitation beam in violet, and the FLIM emission beams in blue, cyan and green.
Fig. 2
Fig. 2 Schematic illustrating the process of obtaining exact and approximate lifetime features. The exact lifetimes are obtained from the deconvolved intrinsic decay h(t) shown in blue, whereas the approximate lifetimes ate obtained from the falling part of the recorded decay y(t), denoted by h ˜ ( t ), which is used as a substitute for the the intrinsic decay.
Fig. 3
Fig. 3 Schematic illustrating the process of obtaining different OCT features. (SRE: Short Run Emphasis, LRE: Long Run Emphasis, HGRE: High Gray-level Run Emphasis, LGRE: Low Gray-level Run Emphasis, SRLGE: Short Run Low Gray-level Emphasis, LRHGE: Long Run High Gray-level Emphasis, SRHGE: Short Run High Gray-level Emphasis, LRLGE: Long Run Low Gray-level Emphasis, GLNU: Gray Level Non-uniformity, RLNU: Run Length Non-uniformity, RPC: Run Percentage)
Fig. 4
Fig. 4 Stacked bar graph showing the proportion of samples belonging to a given class: benign, pre-cancerous, or cancerous (x axis, true class) that were classified correctly (predicted as belonging to the same class) or incorrectly (predicted as belonging to one of the other two classes) for (a) FLIM features (b) OCT features (c) FLIM & OCT features.
Fig. 5
Fig. 5 Results of the classification presented as diagnostic maps overlaid on the OCT volumes for a (a) benign (b) pre-cancerous and (c) cancerous sample. Also shown is a representative sample that contains more than one class

Tables (6)

Tables Icon

Table 1 Results of Wilcoxon signed rank test for comparing the classification accuracies of the exact and approximate FLIM features (n = 31, α = 0.05)

Tables Icon

Table 2 Results of Friedman test for comparing the classification accuracies of different FLIM feature sets (n = 48, d f = 3, α = 0.05)

Tables Icon

Table 3 Post-hoc comparison table for Friedman test for comparing different exact FLIM features (n = 48, α = 0.05)

Tables Icon

Table 4 Results of Friedman test for comparing the classification accuracies of FLIM and OCT features (n = 48, α = 0.05)

Tables Icon

Table 5 Post-hoc comparison table for Friedman test for FLIM and OCT features (n = 48, α = 0.05)

Tables Icon

Table 6 Sensitivity and specificity for FLIM and OCT features

Metrics