Abstract

This paper reports a compact microendoscopic OCT probe with an outer diameter of only 2.7 mm. The small diameter is enabled by a novel 2-axis scanning MEMS mirror with a preset 45° tilted angle. The tilted MEMS mirror is directly integrated on a silicon optical bench (SiOB). The SiOB provides mechanical support and electrical wiring to the mirror plate via a set of bimorph flexure, enabling a compact probe mount design without the requirement of a 45° slope, which is capable to dramatically reduce the probe size and ease the assembly process. Additionally, the SiOB also provides trenches with properly-designed opening widths for automatic alignment of the MEMS mirror, GRIN lens and optical fiber. The 45°-tilted MEMS mirror plate is actuated by four electrothermal bimorph actuators. The packaged 2.7 mm-diameter probe offers 2-axis side-view optical scanning with a large optical scan range of 40° at a low drive voltage of 5.5 Vdc in both axes, allowing a lateral scan area of 2.2 mm × 2.2 mm at a 3 mm working distance. High-resolution 2D and 3D OCT images of the IR card, ex vivo imaging of meniscus specimens and rat brain slices, in vivo imaging of the human finger and nail have been obtained with a TDOCT system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Circumferential-scanning endoscopic optical coherence tomography probe based on a circular array of six 2-axis MEMS mirrors

Site Luo, Dan Wang, Jianyu Tang, Liang Zhou, Can Duan, Donglin Wang, Hao Liu, Yu Zhu, Guoxing Li, Hui Zhao, Yuqing Wu, Xin An, Xinling Li, Yabing Liu, Li Huo, and Huikai Xie
Biomed. Opt. Express 9(5) 2104-2114 (2018)

3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror

Jingjing Sun, Shuguang Guo, Lei Wu, Lin Liu, Se-Woon Choe, Brian S. Sorg, and Huikai Xie
Opt. Express 18(12) 12065-12075 (2010)

Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors

Donglin Wang, Peng Liang, Sean Samuelson, Hongzhi Jia, Junshan Ma, and Huikai Xie
Biomed. Opt. Express 4(10) 2066-2077 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. C. W. Sun, S. Y. Lee, and K. F. Lin, “Review: Optical Scanning Probe for Optical Coherence Tomography,” J. Med. Biol. Eng. 34(1), 95–100 (2014).
  3. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
    [Crossref] [PubMed]
  4. M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, “Catheters for optical coherence tomography,” Laser Phys. Lett. 646(9), 629 (2011).
  5. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004).
    [Crossref] [PubMed]
  6. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
    [Crossref] [PubMed]
  7. J. Su, J. Zhang, L. Yu, and Z. Chen, “In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography,” Opt. Express 15(16), 10390–10396 (2007).
    [Crossref] [PubMed]
  8. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
    [Crossref] [PubMed]
  9. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
    [Crossref] [PubMed]
  10. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
    [Crossref] [PubMed]
  11. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
    [Crossref] [PubMed]
  12. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18(14), 14375–14384 (2010).
    [Crossref] [PubMed]
  13. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
    [Crossref]
  14. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007).
    [Crossref] [PubMed]
  15. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [Crossref] [PubMed]
  16. K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” J. Micromech. Microeng. 19(9), 095012 (2009).
    [Crossref]
  17. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
    [Crossref] [PubMed]
  18. C. Duan, J. Sun, S. Samuelson, and H. Xie, “Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging,” Appl. Opt. 52(26), 6589–6598 (2013).
    [Crossref] [PubMed]
  19. S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
    [Crossref]
  20. Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
    [Crossref]
  21. C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
    [Crossref]
  22. C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “An Optical Coherence Tomography Endoscopic Probe Based on a Tilted MEMS Mirror,” in Biomedical Optics (OSA, 2016), pp. JW3A.17.

2014 (1)

C. W. Sun, S. Y. Lee, and K. F. Lin, “Review: Optical Scanning Probe for Optical Coherence Tomography,” J. Med. Biol. Eng. 34(1), 95–100 (2014).

2013 (2)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

C. Duan, J. Sun, S. Samuelson, and H. Xie, “Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging,” Appl. Opt. 52(26), 6589–6598 (2013).
[Crossref] [PubMed]

2012 (2)

S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

2011 (1)

M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, “Catheters for optical coherence tomography,” Laser Phys. Lett. 646(9), 629 (2011).

2010 (2)

2009 (2)

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
[Crossref] [PubMed]

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” J. Micromech. Microeng. 19(9), 095012 (2009).
[Crossref]

2008 (1)

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

2007 (2)

2006 (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[Crossref]

2004 (3)

2001 (1)

2000 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Aguirre, A. D.

Atif, M.

M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, “Catheters for optical coherence tomography,” Laser Phys. Lett. 646(9), 629 (2011).

Bancu, M. G.

Bernstein, J. J.

Bouma, B. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007).
[Crossref] [PubMed]

Brenner, M.

Carruth, R. W.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, K. W. S.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Chen, N.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Chen, Q.

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

Chen, Y.

Chen, Z.

Choe, S. W.

S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Chudoba, C.

Cobb, M. J.

de Boer, J. F.

Ding, J.

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

Duan, C.

C. Duan, J. Sun, S. Samuelson, and H. Xie, “Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging,” Appl. Opt. 52(26), 6589–6598 (2013).
[Crossref] [PubMed]

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fedder, G. K.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Gallagher, K. A.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Gilchrist, K. H.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” J. Micromech. Microeng. 19(9), 095012 (2009).
[Crossref]

Goodnow, J.

Gora, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Grego, S.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” J. Micromech. Microeng. 19(9), 095012 (2009).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guo, S.

Hamza, M. Y.

M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, “Catheters for optical coherence tomography,” Laser Phys. Lett. 646(9), 629 (2011).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Herz, P. R.

Hsiung, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huo, L.

Ikram, M.

M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, “Catheters for optical coherence tomography,” Laser Phys. Lett. 646(9), 629 (2011).

Izatt, J. A.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” J. Micromech. Microeng. 19(9), 095012 (2009).
[Crossref]

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Jung, W.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[Crossref]

Kava, L. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Khairyanto, A.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Kim, K. H.

Kimmey, M. B.

Ko, T.

Lee, S. Y.

C. W. Sun, S. Y. Lee, and K. F. Lin, “Review: Optical Scanning Probe for Optical Coherence Tomography,” J. Med. Biol. Eng. 34(1), 95–100 (2014).

Lee, T. W.

Leng, Y.

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, K. F.

C. W. Sun, S. Y. Lee, and K. F. Lin, “Review: Optical Scanning Probe for Optical Coherence Tomography,” J. Med. Biol. Eng. 34(1), 95–100 (2014).

Liu, L.

Liu, X.

Madden, K.

Maguluri, G. N.

McCormick, D. T.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[Crossref]

McNabb, R. P.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” J. Micromech. Microeng. 19(9), 095012 (2009).
[Crossref]

Mukai, D. S.

Nishioka, N. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Olivo, M.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Pan, Y.

Park, B. H.

Petersen, C.

Pitris, C.

Pozzi, A.

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

Premachandran, C. S.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rogomentich, F. J.

Rosenberg, M.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Samuelson, S.

Samuelson, S. R.

S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

Sauk, J. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Schmitt, J.

Schneider, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sheppard, C. J. R.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Singh, J.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Sorg, B. S.

S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Su, J.

Sun, C. W.

C. W. Sun, S. Y. Lee, and K. F. Lin, “Review: Optical Scanning Probe for Optical Coherence Tomography,” J. Med. Biol. Eng. 34(1), 95–100 (2014).

Sun, J.

Suter, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Tien, N. C.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[Crossref]

Tran, P. H.

Ullah, H.

M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, “Catheters for optical coherence tomography,” Laser Phys. Lett. 646(9), 629 (2011).

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Wang, L.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[Crossref]

Wang, W.

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

Wu, L.

S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Wu, Y.

Xi, J.

Xie, H.

C. Duan, J. Sun, S. Samuelson, and H. Xie, “Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging,” Appl. Opt. 52(26), 6589–6598 (2013).
[Crossref] [PubMed]

S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
[Crossref] [PubMed]

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

Xu, Y.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

Yu, L.

Zhang, J.

J. Su, J. Zhang, L. Yu, and Z. Chen, “In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography,” Opt. Express 15(16), 10390–10396 (2007).
[Crossref] [PubMed]

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[Crossref]

Zhang, X.

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[Crossref]

J. Med. Biol. Eng. (1)

C. W. Sun, S. Y. Lee, and K. F. Lin, “Review: Optical Scanning Probe for Optical Coherence Tomography,” J. Med. Biol. Eng. 34(1), 95–100 (2014).

J. Microelectromech. Syst. (1)

S. R. Samuelson, L. Wu, J. Sun, S. W. Choe, B. S. Sorg, and H. Xie, “A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

J. Micromech. Microeng. (2)

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18(12), 125005 (2008).
[Crossref]

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” J. Micromech. Microeng. 19(9), 095012 (2009).
[Crossref]

Laser Phys. Lett. (1)

M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, “Catheters for optical coherence tomography,” Laser Phys. Lett. 646(9), 629 (2011).

Nat. Med. (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

C. Duan, W. Wang, X. Zhang, J. Ding, Q. Chen, A. Pozzi, and H. Xie, “A 45°-tilted 2-axis scanning micromirror integrated on a silicon optical bench for 3D endoscopic optical imaging,” in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2015), pp. 948–951.
[Crossref]

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “An Optical Coherence Tomography Endoscopic Probe Based on a Tilted MEMS Mirror,” in Biomedical Optics (OSA, 2016), pp. JW3A.17.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Illustration of the probe design with the MEMS mirror fixed on a 45° slope. (b) The new probe design with the MEMS mirror tilted 45° out of plane.
Fig. 2
Fig. 2 The 45° tilted MEMS mirror with long SiOB. (a) 3D model. (b) SEM of a fabricated device. (c) A close-up SEM of the mirror plate with four actuators. (d) Scan angle versus applied voltage.
Fig. 3
Fig. 3 Optical design of the side-viewing endoscopic OCT probe employing the tilted MEMS mirror (not drawn to scale).
Fig. 4
Fig. 4 Wire-bonding-free technique for 45° tilted MEMS mirror by using FPCB. (a) and (b) Photographs of FPCB. (c) SEM of the conductive pads on the backside of a SiOB.
Fig. 5
Fig. 5 Photographs of the side-viewing endoscopic probe. (a) Overview of the packaged probe. (b) Fully packaged probe placed beside a ruler and one dime. (c) Close-up of the probe head.
Fig. 6
Fig. 6 Photographs of the packaged probe head without tubing. (a) A packaged probe. (b) One-axis scan pattern with driven voltage of 3V for opposed actuators in the longitudinal direction.
Fig. 7
Fig. 7 MEMS based OCT imaging probe. (a) Schematic of a TDOCT system using an endoscopic OCT probe as the sample arm. (b) Photograph of the side-viewing probe connected to the OCT system.
Fig. 8
Fig. 8 Characterization of the lateral scan range of the side-viewing probe. (a) The calibration pattern with a grid size of 2.54 mm. Cross-sectional OCT images of the printed calibration pattern: (b) driving a single actuator to scan in the x-direction; (c) to (e) driving a pair of opposing actuators in the y-direction with the translational stage at different positions.
Fig. 9
Fig. 9 OCT imaging performance of the side-viewing probe. 2D OCT images of (a) IR card, (b) human finger, (c) human nail, and (d) to (f) rat brain tissue slice.
Fig. 10
Fig. 10 2D and 3D OCT images obtained by the endoscopic probe. (a) 2D and (b) 3D OCT images of a rat brain tissue slice with a stainless steel ball of 2 mm in diameter. (c) 2D and (d) 3D OCT images of a rat brain tissue slice with a stainless steel ball of 1 mm in diameter. (e) 2D and (f) 3D OCT images of the normal canine meniscus. (g) 2D and (h) 3D OCT image of the canine meniscus with a simulated horizontal meniscal tear.

Metrics