Abstract

We present a light field digital otoscope designed to measure three-dimensional shape of the tympanic membrane. This paper describes the optical and anatomical considerations we used to develop the prototype, along with the simulation and experimental measurements of vignetting, field curvature, and lateral resolution. Using an experimental evaluation procedure, we have determined depth accuracy and depth precision of our system to be 0.05–0.07 mm and 0.21–0.44 mm, respectively. To demonstrate the application of our light field otoscope, we present the first three-dimensional reconstructions of tympanic membranes in normal and otitis media conditions, acquired from children who participated in a feasibility study at the Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear

Cac T. Nguyen, Haohua Tu, Eric J. Chaney, Charles N. Stewart, and Stephen A. Boppart
Biomed. Opt. Express 1(4) 1104-1116 (2010)

Pneumatic low-coherence interferometry otoscope to quantify tympanic membrane mobility and middle ear pressure

Jungeun Won, Guillermo L. Monroy, Pin-Chieh Huang, Roshan Dsouza, Malcolm C. Hill, Michael A. Novak, Ryan G. Porter, Eric Chaney, Ronit Barkalifa, and Stephen A. Boppart
Biomed. Opt. Express 9(2) 397-409 (2018)

Anti-confocal assessment of middle ear inflammation

David S. Jung, John A. Crowe, John P. Birchall, Michael G. Somekh, and Chung W. See
Biomed. Opt. Express 8(1) 230-242 (2017)

References

  • View by:
  • |
  • |
  • |

  1. American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media, “Diagnosis and management of acute otitis media,” Pediatr. 113(5), 1451 (2004).
    [Crossref]
  2. S. Ahmed, N. L. Shapiro, and N. Bhattacharyya, “Incremental health care utilization and costs for acute otitis media in children,” Laryngoscope 124(1), 301–305 (2014).
    [Crossref]
  3. N. Shaikh, A. Hoberman, H. E. Rockette, and M. Kurs-Lasky, “Development of an Algorithm for the Diagnosis of Otitis Media,” Acad. Pediatr. 12(3), 214–218 (2012).
    [Crossref] [PubMed]
  4. A. Kuruvilla, N. Shaikh, A. Hoberman, and J. Kovačević, “Automated diagnosis of otitis media: vocabulary and grammar,” Int. J. Biomed. Imaging 2013, 27 (2013).
    [Crossref]
  5. M. E. Pichichero and M. D. Poole, “Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media,” Arch. Pediatr. Adolesc. Med. 155(10), 1137–1142 (2001).
    [Crossref] [PubMed]
  6. N. Bedard, I. Tošić, L. Meng, and K. Berkner, “Light field otoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper IM3C.6.
  7. N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.
  8. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).
  9. I. Tošić and K. Berkner, “Light field scale-depth space transform for dense depth estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2014), pp. 435–442.
  10. C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
    [Crossref]
  11. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [Crossref]
  12. C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
    [Crossref]
  13. C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
    [Crossref] [PubMed]
  14. A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
    [Crossref]
  15. D. J. Lim, “Structure and function of the tympanic membrane: a review,” Acta Otorhinolaryngol. Belg. 49(2), 101–115 (1994).
  16. L. Gao, N. Bedard, and I. Tošić, “Disparity-to-depth calibration in light field imaging,” in Imaging and Applied Optics 2016, OSA Technical Digest (Optical Society of America, 2016), paper CW3D.2.
  17. W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,” BIT Numerical Mathematics 34(4), 558–578 (1994).
    [Crossref]
  18. G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Trans. Graph. 26(3), 23 (2007).
    [Crossref]

2015 (1)

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

2014 (1)

S. Ahmed, N. L. Shapiro, and N. Bhattacharyya, “Incremental health care utilization and costs for acute otitis media in children,” Laryngoscope 124(1), 301–305 (2014).
[Crossref]

2013 (1)

A. Kuruvilla, N. Shaikh, A. Hoberman, and J. Kovačević, “Automated diagnosis of otitis media: vocabulary and grammar,” Int. J. Biomed. Imaging 2013, 27 (2013).
[Crossref]

2012 (3)

N. Shaikh, A. Hoberman, H. E. Rockette, and M. Kurs-Lasky, “Development of an Algorithm for the Diagnosis of Otitis Media,” Acad. Pediatr. 12(3), 214–218 (2012).
[Crossref] [PubMed]

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

2010 (1)

2007 (1)

G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Trans. Graph. 26(3), 23 (2007).
[Crossref]

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

2005 (1)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

2004 (1)

American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media, “Diagnosis and management of acute otitis media,” Pediatr. 113(5), 1451 (2004).
[Crossref]

2001 (1)

M. E. Pichichero and M. D. Poole, “Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media,” Arch. Pediatr. Adolesc. Med. 155(10), 1137–1142 (2001).
[Crossref] [PubMed]

1994 (2)

D. J. Lim, “Structure and function of the tympanic membrane: a review,” Acta Otorhinolaryngol. Belg. 49(2), 101–115 (1994).

W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,” BIT Numerical Mathematics 34(4), 558–578 (1994).
[Crossref]

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Ahmed, S.

S. Ahmed, N. L. Shapiro, and N. Bhattacharyya, “Incremental health care utilization and costs for acute otitis media in children,” Laryngoscope 124(1), 301–305 (2014).
[Crossref]

Bedard, N.

N. Bedard, I. Tošić, L. Meng, and K. Berkner, “Light field otoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper IM3C.6.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.

L. Gao, N. Bedard, and I. Tošić, “Disparity-to-depth calibration in light field imaging,” in Imaging and Applied Optics 2016, OSA Technical Digest (Optical Society of America, 2016), paper CW3D.2.

Berkner, K.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.

I. Tošić and K. Berkner, “Light field scale-depth space transform for dense depth estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2014), pp. 435–442.

N. Bedard, I. Tošić, L. Meng, and K. Berkner, “Light field otoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper IM3C.6.

Bhattacharyya, N.

S. Ahmed, N. L. Shapiro, and N. Bhattacharyya, “Incremental health care utilization and costs for acute otitis media in children,” Laryngoscope 124(1), 301–305 (2014).
[Crossref]

Boppart, S. A.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref]

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

Chaney, E. J.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref]

Chen, D.

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

Das, A. J.

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

Dolcetti, S.

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

Estrada, J. C.

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Gander, W.

W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,” BIT Numerical Mathematics 34(4), 558–578 (1994).
[Crossref]

Gao, L.

L. Gao, N. Bedard, and I. Tošić, “Disparity-to-depth calibration in light field imaging,” in Imaging and Applied Optics 2016, OSA Technical Digest (Optical Society of America, 2016), paper CW3D.2.

Ge, Z.

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

Golub, G. H.

W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,” BIT Numerical Mathematics 34(4), 558–578 (1994).
[Crossref]

Gross, M.

G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Trans. Graph. 26(3), 23 (2007).
[Crossref]

Guennebaud, G.

G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Trans. Graph. 26(3), 23 (2007).
[Crossref]

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

Hoberman, A.

A. Kuruvilla, N. Shaikh, A. Hoberman, and J. Kovačević, “Automated diagnosis of otitis media: vocabulary and grammar,” Int. J. Biomed. Imaging 2013, 27 (2013).
[Crossref]

N. Shaikh, A. Hoberman, H. E. Rockette, and M. Kurs-Lasky, “Development of an Algorithm for the Diagnosis of Otitis Media,” Acad. Pediatr. 12(3), 214–218 (2012).
[Crossref] [PubMed]

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

Jung, W.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kim, J.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kovacevic, J.

A. Kuruvilla, N. Shaikh, A. Hoberman, and J. Kovačević, “Automated diagnosis of otitis media: vocabulary and grammar,” Int. J. Biomed. Imaging 2013, 27 (2013).
[Crossref]

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.

Kurs-Lasky, M.

N. Shaikh, A. Hoberman, H. E. Rockette, and M. Kurs-Lasky, “Development of an Algorithm for the Diagnosis of Otitis Media,” Acad. Pediatr. 12(3), 214–218 (2012).
[Crossref] [PubMed]

Kuruvilla, A.

A. Kuruvilla, N. Shaikh, A. Hoberman, and J. Kovačević, “Automated diagnosis of otitis media: vocabulary and grammar,” Int. J. Biomed. Imaging 2013, 27 (2013).
[Crossref]

Levoy, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

Lim, D. J.

D. J. Lim, “Structure and function of the tympanic membrane: a review,” Acta Otorhinolaryngol. Belg. 49(2), 101–115 (1994).

Meng, L.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.

N. Bedard, I. Tošić, L. Meng, and K. Berkner, “Light field otoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper IM3C.6.

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

Nguyen, C. T.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref]

Novak, M.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Perwass, C.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Pichichero, M. E.

M. E. Pichichero and M. D. Poole, “Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media,” Arch. Pediatr. Adolesc. Med. 155(10), 1137–1142 (2001).
[Crossref] [PubMed]

Poole, M. D.

M. E. Pichichero and M. D. Poole, “Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media,” Arch. Pediatr. Adolesc. Med. 155(10), 1137–1142 (2001).
[Crossref] [PubMed]

Raskar, R.

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

Rockette, H. E.

N. Shaikh, A. Hoberman, H. E. Rockette, and M. Kurs-Lasky, “Development of an Algorithm for the Diagnosis of Otitis Media,” Acad. Pediatr. 12(3), 214–218 (2012).
[Crossref] [PubMed]

Shaikh, N.

A. Kuruvilla, N. Shaikh, A. Hoberman, and J. Kovačević, “Automated diagnosis of otitis media: vocabulary and grammar,” Int. J. Biomed. Imaging 2013, 27 (2013).
[Crossref]

N. Shaikh, A. Hoberman, H. E. Rockette, and M. Kurs-Lasky, “Development of an Algorithm for the Diagnosis of Otitis Media,” Acad. Pediatr. 12(3), 214–218 (2012).
[Crossref] [PubMed]

Shapiro, N. L.

S. Ahmed, N. L. Shapiro, and N. Bhattacharyya, “Incremental health care utilization and costs for acute otitis media in children,” Laryngoscope 124(1), 301–305 (2014).
[Crossref]

Stewart, C. N.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express 1(4), 1104–1116 (2010).
[Crossref]

Strebel, R.

W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,” BIT Numerical Mathematics 34(4), 558–578 (1994).
[Crossref]

Tošic, I.

L. Gao, N. Bedard, and I. Tošić, “Disparity-to-depth calibration in light field imaging,” in Imaging and Applied Optics 2016, OSA Technical Digest (Optical Society of America, 2016), paper CW3D.2.

N. Bedard, I. Tošić, L. Meng, and K. Berkner, “Light field otoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper IM3C.6.

I. Tošić and K. Berkner, “Light field scale-depth space transform for dense depth estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2014), pp. 435–442.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.

Tu, H.

Wietzke, L.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Acad. Pediatr. (1)

N. Shaikh, A. Hoberman, H. E. Rockette, and M. Kurs-Lasky, “Development of an Algorithm for the Diagnosis of Otitis Media,” Acad. Pediatr. 12(3), 214–218 (2012).
[Crossref] [PubMed]

ACM Trans. Graph. (2)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Trans. Graph. 26(3), 23 (2007).
[Crossref]

Acta Otorhinolaryngol. Belg. (1)

D. J. Lim, “Structure and function of the tympanic membrane: a review,” Acta Otorhinolaryngol. Belg. 49(2), 101–115 (1994).

Arch. Pediatr. Adolesc. Med. (1)

M. E. Pichichero and M. D. Poole, “Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media,” Arch. Pediatr. Adolesc. Med. 155(10), 1137–1142 (2001).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

BIT Numerical Mathematics (1)

W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,” BIT Numerical Mathematics 34(4), 558–578 (1994).
[Crossref]

Computer Science Technical Report CSTR (1)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2(11), 1–11 (2005).

Int. J. Biomed. Imaging (1)

A. Kuruvilla, N. Shaikh, A. Hoberman, and J. Kovačević, “Automated diagnosis of otitis media: vocabulary and grammar,” Int. J. Biomed. Imaging 2013, 27 (2013).
[Crossref]

Laryngoscope (1)

S. Ahmed, N. L. Shapiro, and N. Bhattacharyya, “Incremental health care utilization and costs for acute otitis media in children,” Laryngoscope 124(1), 301–305 (2014).
[Crossref]

Pediatr. (1)

American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media, “Diagnosis and management of acute otitis media,” Pediatr. 113(5), 1451 (2004).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. USA 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Proc. SPIE (2)

A. J. Das, J. C. Estrada, Z. Ge, S. Dolcetti, D. Chen, and R. Raskar, “A compact structured light based otoscope for three dimensional imaging of the tympanic membrane,” Proc. SPIE 9303, 93031F (2015).
[Crossref]

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Other (4)

L. Gao, N. Bedard, and I. Tošić, “Disparity-to-depth calibration in light field imaging,” in Imaging and Applied Optics 2016, OSA Technical Digest (Optical Society of America, 2016), paper CW3D.2.

I. Tošić and K. Berkner, “Light field scale-depth space transform for dense depth estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2014), pp. 435–442.

N. Bedard, I. Tošić, L. Meng, and K. Berkner, “Light field otoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper IM3C.6.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In Vivo Middle Ear Imaging with a Light Field Otoscope,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2015), paper BW3A.3.

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (1908 KB)      Video of a 3D rendering of a NOE example
» Visualization 2: MOV (2924 KB)      Video of a 3D rendering of a OME example
» Visualization 3: MOV (2228 KB)      Video of a 3D rendering of a AOM example

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Imaging optics for a traditional otoscope and an otoendoscope.
Fig. 2
Fig. 2 Objective lens group for the LFO.
Fig. 3
Fig. 3 Full lens assembly for the LFO.
Fig. 4
Fig. 4 LFO optomechanical design. Caution: LFO prototype is an Investigational Device and is limited by Federal Law to investigational use.
Fig. 5
Fig. 5 LFO image of a 1951 USAF Resolution Target.
Fig. 6
Fig. 6 Depth accuracy estimation. A: Illustration of an experimental setup involving a flat object with TM texture at a controlled distance from the LFO. B: Depth accuracy as a function of field and object distance. C. Depth precision as a function of field and object distance.
Fig. 7
Fig. 7 Vignetting performance for different synthetic apertures.
Fig. 8
Fig. 8 Simulated (red solid line) and measured (red dots) field curvature. LFO objective and rays traced through it are shown for the illustration of the field curvature.
Fig. 9
Fig. 9 The image processing pipeline for 3D reconstruction of the TM. Left: raw light field image from the LFO prototype, with a zoomed area showing the subimages captured behind each microlens. Middle: a matrix of 7×7 multiple views of the TM from different viewpoints, obtained by extracting corresponding pixels from the raw image. Right: 3D surface of the TM obtained after 3D estimation using [9].
Fig. 10
Fig. 10 LFO images and 3D reconstructions from adult TMs. Left panel top: left ear TM 2D image with arrows showing three different viewpoint directions. Left panel bottom: 3D reconstruction of the left ear TM shown from superior, inferior and ventral views. Right panel top: right ear 2D TM image with index of TM anatomical landmarks. Right panel bottom: 3D reconstruction of the right ear TM shown from superior, inferior and ventral views.
Fig. 11
Fig. 11 2D images and 3D reconstructions obtained in the clinical trials using the LFO prototype. Examples of conditions AOM, OME and NOE from the study participants are displayed (superior, inferior and ventral views).

Metrics