Abstract

A multimodal neuroimaging technique based on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was used with horizontal hemifield visual stimuli with graded contrasts to investigate the retinotopic mapping more fully as well as to explore hemispheric differences in neuronal activity, the hemodynamic response, and the neurovascular coupling relationship in the visual cortex. The fNIRS results showed the expected activation over the contralateral hemisphere for both the left and right hemifield visual stimulations. However, the EEG results presented a paradoxical lateralization, with the maximal response located over the ipsilateral hemisphere but with the polarity inversed components located over the contralateral hemisphere. Our results suggest that the polarity inversion as well as the latency advantage over the contralateral hemisphere cause the amplitude of the VEP over the contralateral hemisphere to be smaller than that over the ipsilateral hemisphere. Both the neuronal and hemodynamic responses changed logarithmically with the level of contrast in the hemifield visual stimulations. Moreover, the amplitudes and latencies of the visual evoked potentials (VEPs) were linearly correlated with the hemodynamic responses despite differences in the slopes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of contrast-reversing frequency on the amplitude and spatial distribution of visual cortex hemodynamic responses

Karolina Bejm, Stanisław Wojtkiewicz, Piotr Sawosz, Maciej Perdziak, Zanna Pastuszak, Aleh Sudakou, Petro Guchek, and Adam Liebert
Biomed. Opt. Express 10(12) 6296-6312 (2019)

Optical mapping of brain activation during the English to Chinese and Chinese to English sight translation

Yan He, Meng-Yun Wang, Defeng Li, and Zhen Yuan
Biomed. Opt. Express 8(12) 5399-5411 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
    [Crossref] [PubMed]
  2. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
    [Crossref] [PubMed]
  3. N. K. Logothetis and J. Pfeuffer, “On the nature of the BOLD fMRI contrast mechanism,” Magn. Reson. Imaging 22(10), 1517–1531 (2004).
    [Crossref] [PubMed]
  4. B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
    [Crossref] [PubMed]
  5. H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
    [Crossref] [PubMed]
  6. R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” J. Neurosci. 32(18), 6053–6060 (2012).
    [Crossref] [PubMed]
  7. C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
    [Crossref] [PubMed]
  8. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
    [Crossref] [PubMed]
  9. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  10. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
    [Crossref] [PubMed]
  11. F. Homae, “A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy,” Neuroimage 85(Pt 1), 354–362 (2014).
    [Crossref] [PubMed]
  12. K. Hugdahl, “Hemispheric asymmetry: contributions from brain imaging,” Wiley Interdiscip. Rev. Cogn. Sci. 2(5), 461–478 (2011).
    [Crossref] [PubMed]
  13. B. Lee, Y. Kaneoke, R. Kakigi, and Y. Sakai, “Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres,” Int. J. Psychophysiol. 74(2), 81–87 (2009).
    [Crossref] [PubMed]
  14. A. K. Karim and H. Kojima, “The what and why of perceptual asymmetries in the visual domain,” Adv. Cogn. Psychol. 6(-1), 103–115 (2010).
    [Crossref] [PubMed]
  15. B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron 56(2), 366–383 (2007).
    [Crossref] [PubMed]
  16. D. A. Jeffreys and J. G. Axford, “Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin,” Exp. Brain Res. 16(1), 1–21 (1972).
    [PubMed]
  17. W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
    [Crossref] [PubMed]
  18. D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
    [Crossref] [PubMed]
  19. B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
    [Crossref] [PubMed]
  20. A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
    [Crossref] [PubMed]
  21. F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
    [Crossref] [PubMed]
  22. F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
    [Crossref] [PubMed]
  23. N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
    [Crossref] [PubMed]
  24. G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
    [Crossref] [PubMed]
  25. A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
    [Crossref] [PubMed]
  26. V. L. Towle, M. Brigell, and J. P. Spire, “Hemi-field pattern visual evoked potentials: a comparison of display and analysis techniques,” Brain Topogr. 1(4), 263–270 (1989).
    [Crossref] [PubMed]
  27. J. Arruga, S. E. Feldon, W. F. Hoyt, and M. J. Aminoff, “Monocularly and binocularly evoked visual responses to patterned half-field stimulation,” J. Neurol. Sci. 46(3), 281–290 (1980).
    [Crossref] [PubMed]
  28. D. S. Reich, F. Mechler, and J. D. Victor, “Temporal coding of contrast in primary visual cortex: when, what, and why,” J. Neurophysiol. 85(3), 1039–1050 (2001).
    [PubMed]
  29. J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
    [Crossref] [PubMed]
  30. L. Rovati, G. Salvatori, L. Bulf, and S. Fonda, “Optical and electrical recording of neural activity evoked by graded contrast visual stimulus,” Biomed. Eng. Online 6(1), 28 (2007).
    [Crossref] [PubMed]
  31. X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
    [Crossref] [PubMed]
  32. B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
    [Crossref] [PubMed]
  33. J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
    [Crossref] [PubMed]
  34. H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
    [Crossref] [PubMed]
  35. J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
    [Crossref] [PubMed]
  36. A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4(1), 29 (2005).
    [Crossref] [PubMed]
  37. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
    [Crossref] [PubMed]
  38. S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
    [Crossref] [PubMed]
  39. Diopsys, “The ABCs of VEP office based visual evoked potential: descriptions, methods and applications,” 2nd Ed (2013).
  40. S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
    [Crossref] [PubMed]
  41. D. J. Hagler., “Visual field asymmetries in visual evoked responses,” J. Vis. 14(14), 13 (2014).
    [Crossref] [PubMed]
  42. D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
    [Crossref] [PubMed]
  43. K. Kunita and K. Fujiwara, “Changes in the P100 latency of the visual evoked potential and the saccadic reaction time during isometric contraction of the shoulder girdle elevators,” Eur. J. Appl. Physiol. 92(4-5), 421–424 (2004).
    [Crossref] [PubMed]
  44. S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
    [Crossref] [PubMed]
  45. K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
    [Crossref] [PubMed]
  46. American Clinical Neurophysiology Society, “Guideline 9B: Guidelines on Visual Evoked Potentials,” J. Clin. Neurophysiol. 23(2), 138–156 (2006).
    [Crossref] [PubMed]
  47. C. R. Lines, M. D. Rugg, and A. D. Milner, “The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time,” Exp. Brain Res. 57(1), 89–98 (1984).
    [Crossref] [PubMed]
  48. P. E. Moes, W. S. Brown, and M. T. Minnema, “Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials,” Neuropsychologia 45(11), 2626–2630 (2007).
    [Crossref] [PubMed]
  49. O. J. Arthurs and S. Boniface, “How well do we understand the neural origins of the fMRI BOLD signal?” Trends Neurosci. 25(1), 27–31 (2002).
    [Crossref] [PubMed]
  50. A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
    [Crossref] [PubMed]
  51. J. D. Mendola and I. P. Conner, “Eye dominance predicts fMRI signals in human retinotopic cortex,” Neurosci. Lett. 414(1), 30–34 (2007).
    [Crossref] [PubMed]
  52. A. Taghavy and C. F. Kügler, “Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance,” Eur. Arch. Psychiatry Neurol. Sci. 236(6), 329–332 (1987).
    [Crossref] [PubMed]
  53. Y. Kaneoke, “Magnetoencephalography: in search of neural processes for visual motion information,” Prog. Neurobiol. 80(5), 219–240 (2006).
    [Crossref] [PubMed]

2016 (1)

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

2015 (1)

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

2014 (4)

D. J. Hagler., “Visual field asymmetries in visual evoked responses,” J. Vis. 14(14), 13 (2014).
[Crossref] [PubMed]

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref] [PubMed]

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

F. Homae, “A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy,” Neuroimage 85(Pt 1), 354–362 (2014).
[Crossref] [PubMed]

2012 (5)

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” J. Neurosci. 32(18), 6053–6060 (2012).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
[Crossref] [PubMed]

2011 (2)

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

K. Hugdahl, “Hemispheric asymmetry: contributions from brain imaging,” Wiley Interdiscip. Rev. Cogn. Sci. 2(5), 461–478 (2011).
[Crossref] [PubMed]

2010 (5)

A. K. Karim and H. Kojima, “The what and why of perceptual asymmetries in the visual domain,” Adv. Cogn. Psychol. 6(-1), 103–115 (2010).
[Crossref] [PubMed]

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
[Crossref] [PubMed]

S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
[Crossref] [PubMed]

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

2009 (2)

B. Lee, Y. Kaneoke, R. Kakigi, and Y. Sakai, “Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres,” Int. J. Psychophysiol. 74(2), 81–87 (2009).
[Crossref] [PubMed]

S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
[Crossref] [PubMed]

2007 (6)

P. E. Moes, W. S. Brown, and M. T. Minnema, “Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials,” Neuropsychologia 45(11), 2626–2630 (2007).
[Crossref] [PubMed]

J. D. Mendola and I. P. Conner, “Eye dominance predicts fMRI signals in human retinotopic cortex,” Neurosci. Lett. 414(1), 30–34 (2007).
[Crossref] [PubMed]

B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron 56(2), 366–383 (2007).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

L. Rovati, G. Salvatori, L. Bulf, and S. Fonda, “Optical and electrical recording of neural activity evoked by graded contrast visual stimulus,” Biomed. Eng. Online 6(1), 28 (2007).
[Crossref] [PubMed]

2006 (3)

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

Y. Kaneoke, “Magnetoencephalography: in search of neural processes for visual motion information,” Prog. Neurobiol. 80(5), 219–240 (2006).
[Crossref] [PubMed]

American Clinical Neurophysiology Society, “Guideline 9B: Guidelines on Visual Evoked Potentials,” J. Clin. Neurophysiol. 23(2), 138–156 (2006).
[Crossref] [PubMed]

2005 (2)

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4(1), 29 (2005).
[Crossref] [PubMed]

2004 (3)

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

N. K. Logothetis and J. Pfeuffer, “On the nature of the BOLD fMRI contrast mechanism,” Magn. Reson. Imaging 22(10), 1517–1531 (2004).
[Crossref] [PubMed]

K. Kunita and K. Fujiwara, “Changes in the P100 latency of the visual evoked potential and the saccadic reaction time during isometric contraction of the shoulder girdle elevators,” Eur. J. Appl. Physiol. 92(4-5), 421–424 (2004).
[Crossref] [PubMed]

2003 (2)

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

2002 (3)

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
[Crossref] [PubMed]

O. J. Arthurs and S. Boniface, “How well do we understand the neural origins of the fMRI BOLD signal?” Trends Neurosci. 25(1), 27–31 (2002).
[Crossref] [PubMed]

2001 (2)

D. S. Reich, F. Mechler, and J. D. Victor, “Temporal coding of contrast in primary visual cortex: when, what, and why,” J. Neurophysiol. 85(3), 1039–1050 (2001).
[PubMed]

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

1997 (1)

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

1996 (2)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

1990 (1)

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

1989 (1)

V. L. Towle, M. Brigell, and J. P. Spire, “Hemi-field pattern visual evoked potentials: a comparison of display and analysis techniques,” Brain Topogr. 1(4), 263–270 (1989).
[Crossref] [PubMed]

1987 (1)

A. Taghavy and C. F. Kügler, “Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance,” Eur. Arch. Psychiatry Neurol. Sci. 236(6), 329–332 (1987).
[Crossref] [PubMed]

1984 (1)

C. R. Lines, M. D. Rugg, and A. D. Milner, “The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time,” Exp. Brain Res. 57(1), 89–98 (1984).
[Crossref] [PubMed]

1980 (1)

J. Arruga, S. E. Feldon, W. F. Hoyt, and M. J. Aminoff, “Monocularly and binocularly evoked visual responses to patterned half-field stimulation,” J. Neurol. Sci. 46(3), 281–290 (1980).
[Crossref] [PubMed]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

1976 (1)

G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
[Crossref] [PubMed]

1972 (1)

D. A. Jeffreys and J. G. Axford, “Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin,” Exp. Brain Res. 16(1), 1–21 (1972).
[PubMed]

Aghakhani, Y.

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Al-Asmi, A.

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Amin, F. M.

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

Aminoff, M. J.

J. Arruga, S. E. Feldon, W. F. Hoyt, and M. J. Aminoff, “Monocularly and binocularly evoked visual responses to patterned half-field stimulation,” J. Neurol. Sci. 46(3), 281–290 (1980).
[Crossref] [PubMed]

Aprile, T.

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

Arnold, G.

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

Arruga, J.

J. Arruga, S. E. Feldon, W. F. Hoyt, and M. J. Aminoff, “Monocularly and binocularly evoked visual responses to patterned half-field stimulation,” J. Neurol. Sci. 46(3), 281–290 (1980).
[Crossref] [PubMed]

Arthurs, O. J.

O. J. Arthurs and S. Boniface, “How well do we understand the neural origins of the fMRI BOLD signal?” Trends Neurosci. 25(1), 27–31 (2002).
[Crossref] [PubMed]

Ashina, M.

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

Axford, J. G.

D. A. Jeffreys and J. G. Axford, “Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin,” Exp. Brain Res. 16(1), 1–21 (1972).
[PubMed]

Bach, M.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

Barett, G.

G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
[Crossref] [PubMed]

Bastien, D.

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Bénar, C.

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Beyerle, A.

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

Blumhardt, L.

G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
[Crossref] [PubMed]

Boniface, S.

O. J. Arthurs and S. Boniface, “How well do we understand the neural origins of the fMRI BOLD signal?” Trends Neurosci. 25(1), 27–31 (2002).
[Crossref] [PubMed]

Bozkurt, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4(1), 29 (2005).
[Crossref] [PubMed]

Brewer, A. A.

B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron 56(2), 366–383 (2007).
[Crossref] [PubMed]

Brigell, M.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

V. L. Towle, M. Brigell, and J. P. Spire, “Hemi-field pattern visual evoked potentials: a comparison of display and analysis techniques,” Brain Topogr. 1(4), 263–270 (1989).
[Crossref] [PubMed]

Brown, W. S.

P. E. Moes, W. S. Brown, and M. T. Minnema, “Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials,” Neuropsychologia 45(11), 2626–2630 (2007).
[Crossref] [PubMed]

Bulf, L.

L. Rovati, G. Salvatori, L. Bulf, and S. Fonda, “Optical and electrical recording of neural activity evoked by graded contrast visual stimulus,” Biomed. Eng. Online 6(1), 28 (2007).
[Crossref] [PubMed]

Busch, N. A.

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

Chen, C.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Colier, W. N.

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Conner, I. P.

J. D. Mendola and I. P. Conner, “Eye dominance predicts fMRI signals in human retinotopic cortex,” Neurosci. Lett. 414(1), 30–34 (2007).
[Crossref] [PubMed]

Cope, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Culver, J. P.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

De Vos, M.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Debener, S.

R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” J. Neurosci. 32(18), 6053–6060 (2012).
[Crossref] [PubMed]

Dehghani, H.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Delpy, D. T.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Di Russo, F.

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
[Crossref] [PubMed]

Dirckx, S. G.

S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
[Crossref] [PubMed]

Dubeau, F.

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Dumoulin, S. O.

B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron 56(2), 366–383 (2007).
[Crossref] [PubMed]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Eger, E.

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

Eggebrecht, A. T.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

Eichele, T.

R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” J. Neurosci. 32(18), 6053–6060 (2012).
[Crossref] [PubMed]

Elwell, C. E.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Fallon, P.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Feldon, S. E.

J. Arruga, S. E. Feldon, W. F. Hoyt, and M. J. Aminoff, “Monocularly and binocularly evoked visual responses to patterned half-field stimulation,” J. Neurol. Sci. 46(3), 281–290 (1980).
[Crossref] [PubMed]

Ferradal, S. L.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Fonda, S.

L. Rovati, G. Salvatori, L. Bulf, and S. Fonda, “Optical and electrical recording of neural activity evoked by graded contrast visual stimulus,” Biomed. Eng. Online 6(1), 28 (2007).
[Crossref] [PubMed]

Fries, P.

S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
[Crossref] [PubMed]

Fründ, I.

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

Fuglø, D.

D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
[Crossref] [PubMed]

Fujita, S.

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Fujiwara, K.

K. Kunita and K. Fujiwara, “Changes in the P100 latency of the visual evoked potential and the saccadic reaction time during isometric contraction of the shoulder girdle elevators,” Eur. J. Appl. Physiol. 92(4-5), 421–424 (2004).
[Crossref] [PubMed]

Gallagher, A.

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Gong, H.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref] [PubMed]

Gonzalez, S.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

Gotman, J.

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Grave de Peralta, R.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

Habermehl, C.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Hagler, D. J.

D. J. Hagler., “Visual field asymmetries in visual evoked responses,” J. Vis. 14(14), 13 (2014).
[Crossref] [PubMed]

Halliday, A. M.

G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
[Crossref] [PubMed]

Halliday, E.

G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
[Crossref] [PubMed]

Hansen, A. E.

D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
[Crossref] [PubMed]

Hatanaka, K.

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Herrmann, C. S.

R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” J. Neurosci. 32(18), 6053–6060 (2012).
[Crossref] [PubMed]

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

Hillyard, S. A.

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
[Crossref] [PubMed]

Hoffmann, M. B.

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

Holder, G. E.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

Homae, F.

F. Homae, “A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy,” Neuroimage 85(Pt 1), 354–362 (2014).
[Crossref] [PubMed]

Hoshiyama, M.

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

Hougaard, A.

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

Hoyt, W. F.

J. Arruga, S. E. Feldon, W. F. Hoyt, and M. J. Aminoff, “Monocularly and binocularly evoked visual responses to patterned half-field stimulation,” J. Neurol. Sci. 46(3), 281–290 (1980).
[Crossref] [PubMed]

Hugdahl, K.

K. Hugdahl, “Hemispheric asymmetry: contributions from brain imaging,” Wiley Interdiscip. Rev. Cogn. Sci. 2(5), 461–478 (2011).
[Crossref] [PubMed]

Huster, R. J.

R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” J. Neurosci. 32(18), 6053–6060 (2012).
[Crossref] [PubMed]

Iannetti, G. D.

S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
[Crossref] [PubMed]

Israel, H.

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

Iwata, K.

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

Izenberg, A.

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Jeffreys, D. A.

D. A. Jeffreys and J. G. Axford, “Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin,” Exp. Brain Res. 16(1), 1–21 (1972).
[PubMed]

Jensen, B. H.

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

Jiang, T.

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

Kakigi, R.

B. Lee, Y. Kaneoke, R. Kakigi, and Y. Sakai, “Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres,” Int. J. Psychophysiol. 74(2), 81–87 (2009).
[Crossref] [PubMed]

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

Kaneoke, Y.

B. Lee, Y. Kaneoke, R. Kakigi, and Y. Sakai, “Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres,” Int. J. Psychophysiol. 74(2), 81–87 (2009).
[Crossref] [PubMed]

Y. Kaneoke, “Magnetoencephalography: in search of neural processes for visual motion information,” Prog. Neurobiol. 80(5), 219–240 (2006).
[Crossref] [PubMed]

Kanno, A.

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Karim, A. K.

A. K. Karim and H. Kojima, “The what and why of perceptual asymmetries in the visual domain,” Adv. Cogn. Psychol. 6(-1), 103–115 (2010).
[Crossref] [PubMed]

Kawamura, T.

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Kawashima, R.

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

Kay, A. R.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Kitamura, Y.

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

Kleinschmidt, A.

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

Koch, S. P.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
[Crossref] [PubMed]

Kohl-Bareis, M.

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

Kojima, H.

A. K. Karim and H. Kojima, “The what and why of perceptual asymmetries in the visual domain,” Adv. Cogn. Psychol. 6(-1), 103–115 (2010).
[Crossref] [PubMed]

Koyama, S.

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

Krakow, K.

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

Kriss, A.

G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
[Crossref] [PubMed]

Krueger, A.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Kügler, C. F.

A. Taghavy and C. F. Kügler, “Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance,” Eur. Arch. Psychiatry Neurol. Sci. 236(6), 329–332 (1987).
[Crossref] [PubMed]

Kunita, K.

K. Kunita and K. Fujiwara, “Changes in the P100 latency of the visual evoked potential and the saccadic reaction time during isometric contraction of the shoulder girdle elevators,” Eur. J. Appl. Physiol. 92(4-5), 421–424 (2004).
[Crossref] [PubMed]

Lagae, L.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Lantz, G.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

Larsson, H. B.

D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
[Crossref] [PubMed]

Lassonde, M.

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Laufs, H.

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

Lee, B.

B. Lee, Y. Kaneoke, R. Kakigi, and Y. Sakai, “Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres,” Int. J. Psychophysiol. 74(2), 81–87 (2009).
[Crossref] [PubMed]

Lee, T. M.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Lenz, D.

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

Lepore, F.

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Li, Y.

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

Lines, C. R.

C. R. Lines, M. D. Rugg, and A. D. Milner, “The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time,” Exp. Brain Res. 57(1), 89–98 (1984).
[Crossref] [PubMed]

Logothetis, N. K.

B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
[Crossref] [PubMed]

N. K. Logothetis and J. Pfeuffer, “On the nature of the BOLD fMRI contrast mechanism,” Magn. Reson. Imaging 22(10), 1517–1531 (2004).
[Crossref] [PubMed]

Luo, Q.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref] [PubMed]

Macintosh, B. J.

S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
[Crossref] [PubMed]

Martínez, A.

F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
[Crossref] [PubMed]

Mayhew, S. D.

S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
[Crossref] [PubMed]

McCulloch, D. L.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

Mechler, F.

D. S. Reich, F. Mechler, and J. D. Victor, “Temporal coding of contrast in primary visual cortex: when, what, and why,” J. Neurophysiol. 85(3), 1039–1050 (2001).
[PubMed]

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Mehnert, J.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Mendola, J. D.

J. D. Mendola and I. P. Conner, “Eye dominance predicts fMRI signals in human retinotopic cortex,” Neurosci. Lett. 414(1), 30–34 (2007).
[Crossref] [PubMed]

Mennes, M.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Michel, C. M.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

Mijovic, B.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Milner, A. D.

C. R. Lines, M. D. Rugg, and A. D. Milner, “The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time,” Exp. Brain Res. 57(1), 89–98 (1984).
[Crossref] [PubMed]

Minnema, M. T.

P. E. Moes, W. S. Brown, and M. T. Minnema, “Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials,” Neuropsychologia 45(11), 2626–2630 (2007).
[Crossref] [PubMed]

Moes, P. E.

P. E. Moes, W. S. Brown, and M. T. Minnema, “Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials,” Neuropsychologia 45(11), 2626–2630 (2007).
[Crossref] [PubMed]

Müller, B.

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

Murray, M. M.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

Nakamura, A.

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

Nakasato, N.

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Novitskiy, N.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Obrig, H.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
[Crossref] [PubMed]

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

Odom, J. V.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

Oeseburg, B.

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Onaral, B.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4(1), 29 (2005).
[Crossref] [PubMed]

Patria, F.

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

Pedersen, H.

D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
[Crossref] [PubMed]

Pfeuffer, J.

N. K. Logothetis and J. Pfeuffer, “On the nature of the BOLD fMRI contrast mechanism,” Magn. Reson. Imaging 22(10), 1517–1531 (2004).
[Crossref] [PubMed]

Piper, S. K.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Pitzalis, S.

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
[Crossref] [PubMed]

Preibisch, C.

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Ramautar, J. R.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Reich, D. S.

D. S. Reich, F. Mechler, and J. D. Victor, “Temporal coding of contrast in primary visual cortex: when, what, and why,” J. Neurophysiol. 85(3), 1039–1050 (2001).
[PubMed]

Rieger, J. W.

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

Riera, J.

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

Rosen, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4(1), 29 (2005).
[Crossref] [PubMed]

Rosen, H.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4(1), 29 (2005).
[Crossref] [PubMed]

Rostrup, E.

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
[Crossref] [PubMed]

Rovati, L.

L. Rovati, G. Salvatori, L. Bulf, and S. Fonda, “Optical and electrical recording of neural activity evoked by graded contrast visual stimulus,” Biomed. Eng. Online 6(1), 28 (2007).
[Crossref] [PubMed]

Rugg, M. D.

C. R. Lines, M. D. Rugg, and A. D. Milner, “The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time,” Exp. Brain Res. 57(1), 89–98 (1984).
[Crossref] [PubMed]

Sakai, Y.

B. Lee, Y. Kaneoke, R. Kakigi, and Y. Sakai, “Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres,” Int. J. Psychophysiol. 74(2), 81–87 (2009).
[Crossref] [PubMed]

Salek-Haddadi, A.

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

Salvatori, G.

L. Rovati, G. Salvatori, L. Bulf, and S. Fonda, “Optical and electrical recording of neural activity evoked by graded contrast visual stimulus,” Biomed. Eng. Online 6(1), 28 (2007).
[Crossref] [PubMed]

Schadow, J.

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Schmitz, C. H.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Seki, K.

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Sereno, M. I.

F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
[Crossref] [PubMed]

Shimojo, M.

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

Si, J.

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

Snyder, A. Z.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

Spinelli, D.

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

Spinelli, L.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

Spire, J. P.

V. L. Towle, M. Brigell, and J. P. Spire, “Hemi-field pattern visual evoked potentials: a comparison of display and analysis techniques,” Brain Topogr. 1(4), 263–270 (1989).
[Crossref] [PubMed]

Spitoni, G.

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

Steinbrink, J.

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
[Crossref] [PubMed]

Stiers, P.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Sun, B.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref] [PubMed]

Sun, J.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref] [PubMed]

Sunaert, S.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Taghavy, A.

A. Taghavy and C. F. Kügler, “Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance,” Eur. Arch. Psychiatry Neurol. Sci. 236(6), 329–332 (1987).
[Crossref] [PubMed]

Takahashi, M.

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

Tank, D. W.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Thaerig, S.

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

Thériault, M.

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Tormene, A. P.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

Towle, V. L.

V. L. Towle, M. Brigell, and J. P. Spire, “Hemi-field pattern visual evoked potentials: a comparison of display and analysis techniques,” Brain Topogr. 1(4), 263–270 (1989).
[Crossref] [PubMed]

Tremblay, J.

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

Ugurbil, K.

B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
[Crossref] [PubMed]

Uludag, K.

B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
[Crossref] [PubMed]

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

Vaegan,

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

Van den Bergh, B.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

van der Sluijs, M. C.

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Van Huffel, S.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Vanderperren, K.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Vannasing, P.

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Vanrumste, B.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Victor, J. D.

D. S. Reich, F. Mechler, and J. D. Victor, “Temporal coding of contrast in primary visual cortex: when, what, and why,” J. Neurophysiol. 85(3), 1039–1050 (2001).
[PubMed]

Villringer, A.

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Wagemans, J.

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

Wakabayashi, T.

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

Wan, X.

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

Wandell, B. A.

B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron 56(2), 366–383 (2007).
[Crossref] [PubMed]

Wang, Y.

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Wenzel, R.

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Werner, P.

S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
[Crossref] [PubMed]

White, B. R.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Whittingstall, K.

B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
[Crossref] [PubMed]

Wise, R. G.

S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
[Crossref] [PubMed]

Yesilyurt, B.

B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
[Crossref] [PubMed]

Yoshimoto, T.

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Zhan, Y.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

Zhang, L.

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref] [PubMed]

Zhang, X.

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

Zhang, Y.

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

Zuo, N.

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

Adv. Cogn. Psychol. (1)

A. K. Karim and H. Kojima, “The what and why of perceptual asymmetries in the visual domain,” Adv. Cogn. Psychol. 6(-1), 103–115 (2010).
[Crossref] [PubMed]

Biomed. Eng. Online (2)

L. Rovati, G. Salvatori, L. Bulf, and S. Fonda, “Optical and electrical recording of neural activity evoked by graded contrast visual stimulus,” Biomed. Eng. Online 6(1), 28 (2007).
[Crossref] [PubMed]

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4(1), 29 (2005).
[Crossref] [PubMed]

Brain Res. (1)

D. Bastien, A. Gallagher, J. Tremblay, P. Vannasing, M. Thériault, M. Lassonde, and F. Lepore, “Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy,” Brain Res. 1431, 62–68 (2012).
[Crossref] [PubMed]

Brain Res. Cogn. Brain Res. (1)

A. Nakamura, R. Kakigi, M. Hoshiyama, S. Koyama, Y. Kitamura, and M. Shimojo, “Visual evoked cortical magnetic fields to pattern reversal stimulation,” Brain Res. Cogn. Brain Res. 6(1), 9–22 (1997).
[Crossref] [PubMed]

Brain Topogr. (1)

V. L. Towle, M. Brigell, and J. P. Spire, “Hemi-field pattern visual evoked potentials: a comparison of display and analysis techniques,” Brain Topogr. 1(4), 263–270 (1989).
[Crossref] [PubMed]

Clin. Neurophysiol. (2)

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin. Neurophysiol. 115(10), 2195–2222 (2004).
[Crossref] [PubMed]

C. Bénar, Y. Aghakhani, Y. Wang, A. Izenberg, A. Al-Asmi, F. Dubeau, and J. Gotman, “Quality of EEG in simultaneous EEG-fMRI for epilepsy,” Clin. Neurophysiol. 114(3), 569–580 (2003).
[Crossref] [PubMed]

Doc. Ophthalmol. (1)

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for clinical visual evoked potentials (2009 update),” Doc. Ophthalmol. 120(1), 111–119 (2010).
[Crossref] [PubMed]

Electroencephalogr. Clin. Neurophysiol. (1)

K. Seki, N. Nakasato, S. Fujita, K. Hatanaka, T. Kawamura, A. Kanno, and T. Yoshimoto, “Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure,” Electroencephalogr. Clin. Neurophysiol. 100(5), 436–442 (1996).
[Crossref] [PubMed]

Eur. Arch. Psychiatry Neurol. Sci. (1)

A. Taghavy and C. F. Kügler, “Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance,” Eur. Arch. Psychiatry Neurol. Sci. 236(6), 329–332 (1987).
[Crossref] [PubMed]

Eur. J. Appl. Physiol. (1)

K. Kunita and K. Fujiwara, “Changes in the P100 latency of the visual evoked potential and the saccadic reaction time during isometric contraction of the shoulder girdle elevators,” Eur. J. Appl. Physiol. 92(4-5), 421–424 (2004).
[Crossref] [PubMed]

Exp. Brain Res. (2)

C. R. Lines, M. D. Rugg, and A. D. Milner, “The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time,” Exp. Brain Res. 57(1), 89–98 (1984).
[Crossref] [PubMed]

D. A. Jeffreys and J. G. Axford, “Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin,” Exp. Brain Res. 16(1), 1–21 (1972).
[PubMed]

Hum. Brain Mapp. (1)

F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Hum. Brain Mapp. 15(2), 95–111 (2002).
[Crossref] [PubMed]

Int. J. Psychophysiol. (2)

B. Lee, Y. Kaneoke, R. Kakigi, and Y. Sakai, “Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres,” Int. J. Psychophysiol. 74(2), 81–87 (2009).
[Crossref] [PubMed]

J. Schadow, D. Lenz, S. Thaerig, N. A. Busch, I. Fründ, J. W. Rieger, and C. S. Herrmann, “Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG,” Int. J. Psychophysiol. 66(1), 28–36 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

J. Si, X. Zhang, Y. Li, Y. Zhang, N. Zuo, and T. Jiang, “Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts,” J. Biomed. Opt. 21(9), 091315 (2016).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

B. Yeşilyurt, K. Whittingstall, K. Uğurbil, N. K. Logothetis, and K. Uludağ, “Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans,” J. Cereb. Blood Flow Metab. 30(2), 449–458 (2010).
[Crossref] [PubMed]

J. Clin. Neurophysiol. (1)

American Clinical Neurophysiology Society, “Guideline 9B: Guidelines on Visual Evoked Potentials,” J. Clin. Neurophysiol. 23(2), 138–156 (2006).
[Crossref] [PubMed]

J. Neurol. Sci. (1)

J. Arruga, S. E. Feldon, W. F. Hoyt, and M. J. Aminoff, “Monocularly and binocularly evoked visual responses to patterned half-field stimulation,” J. Neurol. Sci. 46(3), 281–290 (1980).
[Crossref] [PubMed]

J. Neurophysiol. (1)

D. S. Reich, F. Mechler, and J. D. Victor, “Temporal coding of contrast in primary visual cortex: when, what, and why,” J. Neurophysiol. 85(3), 1039–1050 (2001).
[PubMed]

J. Neurosci. (2)

R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” J. Neurosci. 32(18), 6053–6060 (2012).
[Crossref] [PubMed]

S. P. Koch, P. Werner, J. Steinbrink, P. Fries, and H. Obrig, “Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans,” J. Neurosci. 29(44), 13962–13970 (2009).
[Crossref] [PubMed]

J. Vis. (1)

D. J. Hagler., “Visual field asymmetries in visual evoked responses,” J. Vis. 14(14), 13 (2014).
[Crossref] [PubMed]

Magn. Reson. Imaging (2)

S. D. Mayhew, B. J. Macintosh, S. G. Dirckx, G. D. Iannetti, and R. G. Wise, “Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation,” Magn. Reson. Imaging 28(8), 1066–1077 (2010).
[Crossref] [PubMed]

N. K. Logothetis and J. Pfeuffer, “On the nature of the BOLD fMRI contrast mechanism,” Magn. Reson. Imaging 22(10), 1517–1531 (2004).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

D. Fuglø, H. Pedersen, E. Rostrup, A. E. Hansen, and H. B. Larsson, “Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging,” Magn. Reson. Med. 68(1), 252–260 (2012).
[Crossref] [PubMed]

Nature (1)

G. Barett, L. Blumhardt, A. M. Halliday, E. Halliday, and A. Kriss, “A paradox in the lateralisation of the visual evoked response,” Nature 261(5557), 253–255 (1976).
[Crossref] [PubMed]

Neuroimage (10)

N. Novitskiy, J. R. Ramautar, K. Vanderperren, M. De Vos, M. Mennes, B. Mijovic, B. Vanrumste, P. Stiers, B. Van den Bergh, L. Lagae, S. Sunaert, S. Van Huffel, and J. Wagemans, “The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task,” Neuroimage 54(2), 824–835 (2011).
[Crossref] [PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).
[Crossref] [PubMed]

F. Di Russo, S. Pitzalis, G. Spitoni, T. Aprile, F. Patria, D. Spinelli, and S. A. Hillyard, “Identification of the neural sources of the pattern-reversal VEP,” Neuroimage 24(3), 874–886 (2005).
[Crossref] [PubMed]

H. Obrig, H. Israel, M. Kohl-Bareis, K. Uludag, R. Wenzel, B. Müller, G. Arnold, and A. Villringer, “Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult,” Neuroimage 17(1), 1–18 (2002).
[Crossref] [PubMed]

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima, “The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism,” Neuroimage 32(2), 616–625 (2006).
[Crossref] [PubMed]

B. Sun, L. Zhang, H. Gong, J. Sun, and Q. Luo, “Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy,” Neuroimage 87, 190–198 (2014).
[Crossref] [PubMed]

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage 19(4), 1463–1476 (2003).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

F. Homae, “A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy,” Neuroimage 85(Pt 1), 354–362 (2014).
[Crossref] [PubMed]

S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” Neuroimage 85(Pt 1), 64–71 (2014).
[Crossref] [PubMed]

Neuron (1)

B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron 56(2), 366–383 (2007).
[Crossref] [PubMed]

Neuropsychologia (1)

P. E. Moes, W. S. Brown, and M. T. Minnema, “Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials,” Neuropsychologia 45(11), 2626–2630 (2007).
[Crossref] [PubMed]

Neurosci. Lett. (1)

J. D. Mendola and I. P. Conner, “Eye dominance predicts fMRI signals in human retinotopic cortex,” Neurosci. Lett. 414(1), 30–34 (2007).
[Crossref] [PubMed]

Pediatr. Res. (1)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).
[Crossref] [PubMed]

PLoS One (1)

A. Hougaard, B. H. Jensen, F. M. Amin, E. Rostrup, M. B. Hoffmann, and M. Ashina, “Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation,” PLoS One 10(5), e0126477 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Prog. Neurobiol. (1)

Y. Kaneoke, “Magnetoencephalography: in search of neural processes for visual motion information,” Prog. Neurobiol. 80(5), 219–240 (2006).
[Crossref] [PubMed]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

Trends Neurosci. (1)

O. J. Arthurs and S. Boniface, “How well do we understand the neural origins of the fMRI BOLD signal?” Trends Neurosci. 25(1), 27–31 (2002).
[Crossref] [PubMed]

Vision Res. (1)

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, “Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm,” Vision Res. 41(1), 97–102 (2001).
[Crossref] [PubMed]

Wiley Interdiscip. Rev. Cogn. Sci. (1)

K. Hugdahl, “Hemispheric asymmetry: contributions from brain imaging,” Wiley Interdiscip. Rev. Cogn. Sci. 2(5), 461–478 (2011).
[Crossref] [PubMed]

Other (1)

Diopsys, “The ABCs of VEP office based visual evoked potential: descriptions, methods and applications,” 2nd Ed (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental configuration. a) Experimental paradigm of the hemifield visual task. The entire experimental paradigm consisted of an initial baseline period (30 s) followed by 27 blocks. Each block consisted of a stimulation period (25 s, reversal rate: 4 reversals/s) and a resting period (30 s). b) The diagram of the head illustrates the placement of the electrode Oz (green hexagon) and optodes, specifically 6 sources (red stars) and 12 detectors (blue circles), yielding 20 optical channels (black lines marked with channel numbers). The distance between a neighboring source and the detector pairs was 3 cm and the probe covered an area of approximately 6 × 6 cm2 for each hemisphere.
Fig. 2
Fig. 2 The group-averaged VEP results for a) the left visual field and b) the right visual field stimulations at different contrast levels: 1% (left column, blue lines), 10% (middle column, green lines), and 100% (right column, red lines), recorded from electrodes P7, P5, PO7, PO3, Oz, PO4, PO8, P6, and P8, respectively. The gray dotted lines indicate the stimulus onset. In comparison, both the amplitude and latency of the VEPs varied with contrast level with the amplitude increasing and the latency decreasing as the stimulus contrast increased. Moreover, the main VEP components across the three contrast levels indicated opposite polarities over the left and the right hemispheres for the hemifield visual stimulations.
Fig. 3
Fig. 3 The amplitudes of Peak2 for a) the left visual field and d) the right visual field against the stimulus contrast levels. The amplitudes of Peak2-Peak1 for b) the left visual field and e) the right visual field against the stimulus contrast levels. The latencies of Peak2 for c) the left visual field and f) the right visual field in response to the varying contrast levels. Error bars show the SE.
Fig. 4
Fig. 4 The group-averaged SEP results for finger tapping of a) the left hand (left column, blue lines) and b) the right hand (right column, red lines), recorded from electrodes T7, C3, Cz, C4, and T8, respectively. The gray dotted lines indicate the stimulus onset. A comparison of the graphs shows that the main components across the five electrodes had a similar polarity over the left and the right hemispheres for unilateral finger tapping tasks.
Fig. 5
Fig. 5 The group-averaged spatial distribution maps of the hemodynamic changes for the visual checkerboard reversal tasks at different contrast levels: 1% (left column), 10% (middle column), and 100% (right column) for the left visual field (top row) and the right visual field (bottom row). The color bar indicates the HbO/ HbR concentration changes in μmol/l.
Fig. 6
Fig. 6 Hemispheric differences in the hemodynamic responses during hemifield visual stimulations with graded contrasts. Comparison of the changes in a) HbO and b) HbR concentration over the left hemisphere (LH) and the right hemisphere (RH) of the visual cortex across the 1%, 10%, and 100% contrast levels for the left hemifield visual stimulation; Comparison of the changes in c) HbO and d) HbR concentration over the left hemisphere and the right hemisphere of the visual cortex across the 1%, 10%, and 100% contrast levels for the right hemifield visual stimulation; error bars show the SE. For the hemifield visual stimulations, the functional activated areas were consistently located over the lateral areas contralateral to the stimulated hemifield. The amplitudes of the HbO concentration monotonically increased as the contrast level increased. The changes in the HbO amplitudes are more apparent than those of the HbR.
Fig. 7
Fig. 7 Correlations between the VEPs and the corresponding hemodynamic responses at different contrast levels for the hemifield visual stimulations. a), b), and c) respectively show the relationship between the Peak2 amplitude, Peak2-Peak1 amplitude, and Peak2 latency of the VEP against the hemodynamic response at different contrast levels for the left hemifield visual stimulations. d), e), and f) respectively show the relationship between the Peak2 amplitude, Peak2-Peak1 amplitude, and Peak2 latency of the VEP against the hemodynamic response at different contrast levels for the right hemifield visual stimulation. The dot, triangle, and square represent the 1%, 10%, and 100% contrast levels, respectively. The red and blue lines indicate HbO and HbR, respectively. Error bars show the SE.

Tables (1)

Tables Icon

Table 1 Overview of the peak amplitudes and peak time of the VEP and the corresponding hemodynamic responses at three contrast levels (mean ± SE)

Metrics