Abstract

Fluorescent DNA base analogs and intrinsic fluorophores are gaining importance for multiphoton microscopy and imaging, however, their quantitative nonlinear excitation properties have been poorly documented. Here we present the two-photon absorption (2PA) spectra of 2-aminopurine (2AP), 7-methyl guanosine (7MG), isoxanthopterin (IXP), 6-methyl isoxanthopterin (6MI), as well as L-tryptophan (L-trp) and 3-methylindole (3MI) in aqueous solution and some organic solvents measured in the wavelength range 550 - 810 nm using femtosecond two-photon excited fluorescence (2PEF) and nonlinear transmission (NLT) methods. The peak 2PA cross section values range from 0.1 GM (1 GM = 10−50 cm4 s photon−1) for 2AP to 2.0 GM for IXP and 7MG. Assuming typical excitation conditions for a scanning 2PEF microscope, we estimate a maximum image frame rate of ~175 frames per second (FPS).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-accuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range

Sophie de Reguardati, Juri Pahapill, Alexander Mikhailov, Yuriy Stepanenko, and Aleksander Rebane
Opt. Express 24(8) 9053-9066 (2016)

Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser

Meredith H. Brenner, Dawen Cai, Joel A. Swanson, and Jennifer P. Ogilvie
Opt. Express 21(14) 17256-17264 (2013)

Dual-mode laparoscopic fluorescence image-guided surgery using a single camera

Daniel C. Gray, Evgenia M. Kim, Victoria E. Cotero, Anshika Bajaj, V. Paul Staudinger, Cristina A. Tan Hehir, and Siavash Yazdanfar
Biomed. Opt. Express 3(8) 1880-1890 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
    [Crossref] [PubMed]
  2. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
    [Crossref] [PubMed]
  3. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
    [Crossref] [PubMed]
  4. L. M. Wilhelmsson and Y. Tor, Fluorescent Analogs of Biomolecular Building Blocks.Design and Applications (J. Wiley & Sons, INC, 2016).
  5. A. A. Rehms and P. R. Callis, “Two-photon fluorescence excitation spectra of aromatic amino acids,” Chem. Phys. Lett. 208(3-4), 276–282 (1993).
    [Crossref]
  6. Y. Guo, Q. Z. Wang, and R. R. Alfano, “Noninvasive two-photon-excitation imaging of tryptophan distribution in highly scattering biological tissues,” Opt. Commun. 154(5-6), 383–389 (1998).
    [Crossref]
  7. B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
    [Crossref] [PubMed]
  8. C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
    [Crossref] [PubMed]
  9. M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
    [Crossref] [PubMed]
  10. Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
    [Crossref]
  11. P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
    [Crossref]
  12. Y. P. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Kvant. electron. 23(6), 551– 552 (1996).
  13. C. R. Stoltzfus and A. Rebane, “Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging,” Biomed. Opt. Express 7(5), 1768–1782 (2016).
    [Crossref] [PubMed]
  14. A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
    [Crossref]
  15. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
    [Crossref] [PubMed]
  16. G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
    [Crossref] [PubMed]
  17. A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).
  18. S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko, and A. Rebane, “High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range,” Opt. Express 24(8), 9053–9066 (2016).
    [Crossref] [PubMed]
  19. R. S. K. Lane and S. W. Magennis, “Two-photon excitation of the fluorescent nucleobase analogues 2-AP and tC,” RSC Advances 2(30), 11397–11403 (2012).
    [Crossref]
  20. K. Evans, D. Xu, Y. Kim, and T. M. Nordlund, “2-Aminopurine optical spectra: Solvent, pentose ring, and DNA helix melting dependence,” J. Fluoresc. 2(4), 209–216 (1992).
    [Crossref] [PubMed]
  21. R. K. Neely, S. W. Magennis, D. T. F. Dryden, and A. C. Jones, “Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements,” J. Phys. Chem. B 108(45), 17606–17610 (2004).
    [Crossref]
  22. E. Katilius and N. W. Woodbury, “Multiphoton excitation of fluorescent DNA base analogs,” J. Biomed. Opt. 11(4), 044004 (2006).
    [Crossref] [PubMed]
  23. E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
    [Crossref]
  24. A. A. Rehms and P. R. Callis, “Resolution of La and Lb bands in methyl indoles by two-photon spectroscopy,” Chem. Phys. Lett. 140(1), 83–89 (1987).
    [Crossref]
  25. G. D. Fasman, Handbook of Biochemistry and Molecular Biology, 3rd ed. (CRC Press, 1976).
  26. G. Stoychev, B. Kierdaszuk, and D. Shugar, “Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine,” Biochim. Biophys. Acta 1544(1-2), 74–88 (2001).
    [Crossref] [PubMed]
  27. P. E. Schurr, H. T. Thompson, L. Henderson, and J. N. Williams, Jr., and E. C.A., “The determination of free amino acids in rat tissues,” J. Biol. Chem. 182, 39–46 (1950).
  28. R. H. McMenamy, C. C. Lund, and J. L. Oncley, “Unbound amino acid concentrations in human blood plasmas,” J. Clin. Invest. 36(12), 1672–1679 (1957).
    [Crossref] [PubMed]
  29. M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
    [Crossref] [PubMed]
  30. J. Smagowicz and K. L. Wierzchowski, “Lowest excited state of 2-aminopurine,” J. Fluoresc. 8, 210–232 (1974).
  31. D. W. Pierce and S. G. Boxer, “Stark effect spectroscopy of tryptophan,” Biophys. J. 68(4), 1583–1591 (1995).
    [Crossref] [PubMed]
  32. E. Jalviste and N. Ohta, “Stark absorption spectroscopy of indole and 3-methylindole,” J. Chem. Phys. 121(10), 4730–4739 (2004).
    [Crossref] [PubMed]

2017 (1)

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

2016 (2)

2014 (1)

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

2012 (2)

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

R. S. K. Lane and S. W. Magennis, “Two-photon excitation of the fluorescent nucleobase analogues 2-AP and tC,” RSC Advances 2(30), 11397–11403 (2012).
[Crossref]

2011 (1)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

2010 (2)

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

2009 (1)

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

2008 (3)

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

2006 (1)

E. Katilius and N. W. Woodbury, “Multiphoton excitation of fluorescent DNA base analogs,” J. Biomed. Opt. 11(4), 044004 (2006).
[Crossref] [PubMed]

2004 (2)

R. K. Neely, S. W. Magennis, D. T. F. Dryden, and A. C. Jones, “Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements,” J. Phys. Chem. B 108(45), 17606–17610 (2004).
[Crossref]

E. Jalviste and N. Ohta, “Stark absorption spectroscopy of indole and 3-methylindole,” J. Chem. Phys. 121(10), 4730–4739 (2004).
[Crossref] [PubMed]

2003 (1)

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

2002 (1)

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
[Crossref] [PubMed]

2001 (2)

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

G. Stoychev, B. Kierdaszuk, and D. Shugar, “Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine,” Biochim. Biophys. Acta 1544(1-2), 74–88 (2001).
[Crossref] [PubMed]

1998 (1)

Y. Guo, Q. Z. Wang, and R. R. Alfano, “Noninvasive two-photon-excitation imaging of tryptophan distribution in highly scattering biological tissues,” Opt. Commun. 154(5-6), 383–389 (1998).
[Crossref]

1996 (1)

Y. P. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Kvant. electron. 23(6), 551– 552 (1996).

1995 (1)

D. W. Pierce and S. G. Boxer, “Stark effect spectroscopy of tryptophan,” Biophys. J. 68(4), 1583–1591 (1995).
[Crossref] [PubMed]

1993 (1)

A. A. Rehms and P. R. Callis, “Two-photon fluorescence excitation spectra of aromatic amino acids,” Chem. Phys. Lett. 208(3-4), 276–282 (1993).
[Crossref]

1992 (1)

K. Evans, D. Xu, Y. Kim, and T. M. Nordlund, “2-Aminopurine optical spectra: Solvent, pentose ring, and DNA helix melting dependence,” J. Fluoresc. 2(4), 209–216 (1992).
[Crossref] [PubMed]

1990 (1)

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

1987 (1)

A. A. Rehms and P. R. Callis, “Resolution of La and Lb bands in methyl indoles by two-photon spectroscopy,” Chem. Phys. Lett. 140(1), 83–89 (1987).
[Crossref]

1974 (1)

J. Smagowicz and K. L. Wierzchowski, “Lowest excited state of 2-aminopurine,” J. Fluoresc. 8, 210–232 (1974).

1957 (1)

R. H. McMenamy, C. C. Lund, and J. L. Oncley, “Unbound amino acid concentrations in human blood plasmas,” J. Clin. Invest. 36(12), 1672–1679 (1957).
[Crossref] [PubMed]

1950 (1)

P. E. Schurr, H. T. Thompson, L. Henderson, and J. N. Williams, Jr., and E. C.A., “The determination of free amino acids in rat tissues,” J. Biol. Chem. 182, 39–46 (1950).

Abboud, K. A.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Alfano, R. R.

Y. Guo, Q. Z. Wang, and R. R. Alfano, “Noninvasive two-photon-excitation imaging of tryptophan distribution in highly scattering biological tissues,” Opt. Commun. 154(5-6), 383–389 (1998).
[Crossref]

Anderson, H. L.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

Balaji, J.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

Barnett, L.

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

Basché, T.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
[Crossref] [PubMed]

Beuerman, E.

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

Boxer, S. G.

D. W. Pierce and S. G. Boxer, “Stark effect spectroscopy of tryptophan,” Biophys. J. 68(4), 1583–1591 (1995).
[Crossref] [PubMed]

Buckley, L.

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

Callis, P. R.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

A. A. Rehms and P. R. Callis, “Two-photon fluorescence excitation spectra of aromatic amino acids,” Chem. Phys. Lett. 208(3-4), 276–282 (1993).
[Crossref]

A. A. Rehms and P. R. Callis, “Resolution of La and Lb bands in methyl indoles by two-photon spectroscopy,” Chem. Phys. Lett. 140(1), 83–89 (1987).
[Crossref]

Chin, A. S.

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

Collins, H. A.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

Collins, J.

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

Côté, D.

de Reguardati, S.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko, and A. Rebane, “High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range,” Opt. Express 24(8), 9053–9066 (2016).
[Crossref] [PubMed]

Decker, H.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
[Crossref] [PubMed]

Denning, R. G.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

Deutsch, T. F.

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

Drobizhev, M.

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

Dryden, D. T. F.

R. K. Neely, S. W. Magennis, D. T. F. Dryden, and A. C. Jones, “Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements,” J. Phys. Chem. B 108(45), 17606–17610 (2004).
[Crossref]

Dubinina, G. G.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Dunn, D. A.

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

Erker, W.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
[Crossref] [PubMed]

Evans, K.

K. Evans, D. Xu, Y. Kim, and T. M. Nordlund, “2-Aminopurine optical spectra: Solvent, pentose ring, and DNA helix melting dependence,” J. Fluoresc. 2(4), 209–216 (1992).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, Q. Z. Wang, and R. R. Alfano, “Noninvasive two-photon-excitation imaging of tryptophan distribution in highly scattering biological tissues,” Opt. Commun. 154(5-6), 383–389 (1998).
[Crossref]

Hawkins, M. E.

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

He, G. S.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

Hefetz, Y.

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

Henderson, L.

P. E. Schurr, H. T. Thompson, L. Henderson, and J. N. Williams, Jr., and E. C.A., “The determination of free amino acids in rat tissues,” J. Biol. Chem. 182, 39–46 (1950).

Hillenkamp, F.

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

Hughes, T.

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

Hughes, T. E.

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Jalviste, E.

E. Jalviste and N. Ohta, “Stark absorption spectroscopy of indole and 3-methylindole,” J. Chem. Phys. 121(10), 4730–4739 (2004).
[Crossref] [PubMed]

Jones, A. C.

R. K. Neely, S. W. Magennis, D. T. F. Dryden, and A. C. Jones, “Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements,” J. Phys. Chem. B 108(45), 17606–17610 (2004).
[Crossref]

Katilius, E.

E. Katilius and N. W. Woodbury, “Multiphoton excitation of fluorescent DNA base analogs,” J. Biomed. Opt. 11(4), 044004 (2006).
[Crossref] [PubMed]

Kaushalya, S. K.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Kierdaszuk, B.

G. Stoychev, B. Kierdaszuk, and D. Shugar, “Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine,” Biochim. Biophys. Acta 1544(1-2), 74–88 (2001).
[Crossref] [PubMed]

Kim, Y.

K. Evans, D. Xu, Y. Kim, and T. M. Nordlund, “2-Aminopurine optical spectra: Solvent, pentose ring, and DNA helix melting dependence,” J. Fluoresc. 2(4), 209–216 (1992).
[Crossref] [PubMed]

Kochevar, I. E.

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

Kohler, B.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

Kumar, G. R.

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

Lane, R. S. K.

R. S. K. Lane and S. W. Magennis, “Two-photon excitation of the fluorescent nucleobase analogues 2-AP and tC,” RSC Advances 2(30), 11397–11403 (2012).
[Crossref]

Laws, W. R.

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

Li, C.

Lin, C. P.

Lindquist, J. R.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

Lippitz, M.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
[Crossref] [PubMed]

Lund, C. C.

R. H. McMenamy, C. C. Lund, and J. L. Oncley, “Unbound amino acid concentrations in human blood plasmas,” J. Clin. Invest. 36(12), 1672–1679 (1957).
[Crossref] [PubMed]

Magennis, S. W.

R. S. K. Lane and S. W. Magennis, “Two-photon excitation of the fluorescent nucleobase analogues 2-AP and tC,” RSC Advances 2(30), 11397–11403 (2012).
[Crossref]

R. K. Neely, S. W. Magennis, D. T. F. Dryden, and A. C. Jones, “Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements,” J. Phys. Chem. B 108(45), 17606–17610 (2004).
[Crossref]

Maiti, S.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

Matt, R.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

McMenamy, R. H.

R. H. McMenamy, C. C. Lund, and J. L. Oncley, “Unbound amino acid concentrations in human blood plasmas,” J. Clin. Invest. 36(12), 1672–1679 (1957).
[Crossref] [PubMed]

Meshalkin, Y. P.

Y. P. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Kvant. electron. 23(6), 551– 552 (1996).

Mikhailov, A.

Mikhaylov, A.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

Mukherjee, S.

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

Nag, S.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Neely, R. K.

R. K. Neely, S. W. Magennis, D. T. F. Dryden, and A. C. Jones, “Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements,” J. Phys. Chem. B 108(45), 17606–17610 (2004).
[Crossref]

Nordlund, T. M.

K. Evans, D. Xu, Y. Kim, and T. M. Nordlund, “2-Aminopurine optical spectra: Solvent, pentose ring, and DNA helix melting dependence,” J. Fluoresc. 2(4), 209–216 (1992).
[Crossref] [PubMed]

Ohta, N.

E. Jalviste and N. Ohta, “Stark absorption spectroscopy of indole and 3-methylindole,” J. Chem. Phys. 121(10), 4730–4739 (2004).
[Crossref] [PubMed]

Oncley, J. L.

R. H. McMenamy, C. C. Lund, and J. L. Oncley, “Unbound amino acid concentrations in human blood plasmas,” J. Clin. Invest. 36(12), 1672–1679 (1957).
[Crossref] [PubMed]

Osman, R.

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

Pahapill, J.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko, and A. Rebane, “High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range,” Opt. Express 24(8), 9053–9066 (2016).
[Crossref] [PubMed]

Pastila, R. K.

Pawlicki, M.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

Pfleiderer, W.

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

Philip, R.

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

Pierce, D. W.

D. W. Pierce and S. G. Boxer, “Stark effect spectroscopy of tryptophan,” Biophys. J. 68(4), 1583–1591 (1995).
[Crossref] [PubMed]

Pitsillides, C.

Prasad, P. N.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

Price, R. S.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Puoris’haag, M.

Rebane, A.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

C. R. Stoltzfus and A. Rebane, “Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging,” Biomed. Opt. Express 7(5), 1768–1782 (2016).
[Crossref] [PubMed]

S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko, and A. Rebane, “High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range,” Opt. Express 24(8), 9053–9066 (2016).
[Crossref] [PubMed]

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

Rehms, A. A.

A. A. Rehms and P. R. Callis, “Two-photon fluorescence excitation spectra of aromatic amino acids,” Chem. Phys. Lett. 208(3-4), 276–282 (1993).
[Crossref]

A. A. Rehms and P. R. Callis, “Resolution of La and Lb bands in methyl indoles by two-photon spectroscopy,” Chem. Phys. Lett. 140(1), 83–89 (1987).
[Crossref]

Ross, J. B. A.

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

Runnels, J. M.

Sahoo, B.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Schanze, K. S.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Schurr, P. E.

P. E. Schurr, H. T. Thompson, L. Henderson, and J. N. Williams, Jr., and E. C.A., “The determination of free amino acids in rat tissues,” J. Biol. Chem. 182, 39–46 (1950).

Seibert, E.

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

Sengupta, P.

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

Shugar, D.

G. Stoychev, B. Kierdaszuk, and D. Shugar, “Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine,” Biochim. Biophys. Acta 1544(1-2), 74–88 (2001).
[Crossref] [PubMed]

Smagowicz, J.

J. Smagowicz and K. L. Wierzchowski, “Lowest excited state of 2-aminopurine,” J. Fluoresc. 8, 210–232 (1974).

Stepanenko, Y.

S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko, and A. Rebane, “High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range,” Opt. Express 24(8), 9053–9066 (2016).
[Crossref] [PubMed]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Stoltzfus, C.

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

Stoltzfus, C. R.

Stoychev, G.

G. Stoychev, B. Kierdaszuk, and D. Shugar, “Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine,” Biochim. Biophys. Acta 1544(1-2), 74–88 (2001).
[Crossref] [PubMed]

Tan, L. S.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

Thompson, H. T.

P. E. Schurr, H. T. Thompson, L. Henderson, and J. N. Williams, Jr., and E. C.A., “The determination of free amino acids in rat tissues,” J. Biol. Chem. 182, 39–46 (1950).

Tillo, S.

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Topol, I.

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

Trummal, A.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

Uudsemaa, M.

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

van Holde, K. E.

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
[Crossref] [PubMed]

Wang, Q. Z.

Y. Guo, Q. Z. Wang, and R. R. Alfano, “Noninvasive two-photon-excitation imaging of tryptophan distribution in highly scattering biological tissues,” Opt. Commun. 154(5-6), 383–389 (1998).
[Crossref]

Wicks, G.

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Wierzchowski, K. L.

J. Smagowicz and K. L. Wierzchowski, “Lowest excited state of 2-aminopurine,” J. Fluoresc. 8, 210–232 (1974).

Williams, J. N.

P. E. Schurr, H. T. Thompson, L. Henderson, and J. N. Williams, Jr., and E. C.A., “The determination of free amino acids in rat tissues,” J. Biol. Chem. 182, 39–46 (1950).

Wnuk, P.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Woodbury, N. W.

E. Katilius and N. W. Woodbury, “Multiphoton excitation of fluorescent DNA base analogs,” J. Biomed. Opt. 11(4), 044004 (2006).
[Crossref] [PubMed]

Xu, D.

K. Evans, D. Xu, Y. Kim, and T. M. Nordlund, “2-Aminopurine optical spectra: Solvent, pentose ring, and DNA helix melting dependence,” J. Fluoresc. 2(4), 209–216 (1992).
[Crossref] [PubMed]

Zheng, Q.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

G. Stoychev, B. Kierdaszuk, and D. Shugar, “Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine,” Biochim. Biophys. Acta 1544(1-2), 74–88 (2001).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

D. W. Pierce and S. G. Boxer, “Stark effect spectroscopy of tryptophan,” Biophys. J. 68(4), 1583–1591 (1995).
[Crossref] [PubMed]

Chem. Phys. Lett. (2)

A. A. Rehms and P. R. Callis, “Resolution of La and Lb bands in methyl indoles by two-photon spectroscopy,” Chem. Phys. Lett. 140(1), 83–89 (1987).
[Crossref]

A. A. Rehms and P. R. Callis, “Two-photon fluorescence excitation spectra of aromatic amino acids,” Chem. Phys. Lett. 208(3-4), 276–282 (1993).
[Crossref]

Chem. Rev. (1)

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Y. Hefetz, D. A. Dunn, T. F. Deutsch, L. Buckley, F. Hillenkamp, and I. E. Kochevar, “Laser Photochemistry of DNA: Two-Photon Absorption and Optical Breakdown Using High-Intensity, 532-nm Radiation,” J. Am. Chem. Soc. 112(23), 8528–8532 (1990).
[Crossref]

J. Biol. Chem. (1)

P. E. Schurr, H. T. Thompson, L. Henderson, and J. N. Williams, Jr., and E. C.A., “The determination of free amino acids in rat tissues,” J. Biol. Chem. 182, 39–46 (1950).

J. Biomed. Opt. (1)

E. Katilius and N. W. Woodbury, “Multiphoton excitation of fluorescent DNA base analogs,” J. Biomed. Opt. 11(4), 044004 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (2)

E. Jalviste and N. Ohta, “Stark absorption spectroscopy of indole and 3-methylindole,” J. Chem. Phys. 121(10), 4730–4739 (2004).
[Crossref] [PubMed]

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

J. Clin. Invest. (1)

R. H. McMenamy, C. C. Lund, and J. L. Oncley, “Unbound amino acid concentrations in human blood plasmas,” J. Clin. Invest. 36(12), 1672–1679 (1957).
[Crossref] [PubMed]

J. Fluoresc. (2)

K. Evans, D. Xu, Y. Kim, and T. M. Nordlund, “2-Aminopurine optical spectra: Solvent, pentose ring, and DNA helix melting dependence,” J. Fluoresc. 2(4), 209–216 (1992).
[Crossref] [PubMed]

J. Smagowicz and K. L. Wierzchowski, “Lowest excited state of 2-aminopurine,” J. Fluoresc. 8, 210–232 (1974).

J. Lumin. (1)

A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, S. Tillo, and T. Hughes, “New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy,” J. Lumin. 130(9), 1619–1623 (2010).
[Crossref]

J. Phys. Chem. A (1)

E. Seibert, A. S. Chin, W. Pfleiderer, M. E. Hawkins, W. R. Laws, R. Osman, and J. B. A. Ross, “pH-dependent spectroscopy and electronic structure of the guanine analogue 6,8-dimethylisoxanthopterin,” J. Phys. Chem. A 107(1), 178–185 (2003).
[Crossref]

J. Phys. Chem. B (2)

R. K. Neely, S. W. Magennis, D. T. F. Dryden, and A. C. Jones, “Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements,” J. Phys. Chem. B 108(45), 17606–17610 (2004).
[Crossref]

M. Drobizhev, C. Stoltzfus, I. Topol, J. Collins, G. Wicks, A. Mikhaylov, L. Barnett, T. E. Hughes, and A. Rebane, “Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells,” J. Phys. Chem. B 118(31), 9167–9179 (2014).
[Crossref] [PubMed]

Kvant. electron. (1)

Y. P. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Kvant. electron. 23(6), 551– 552 (1996).

Nat. Methods (1)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Guo, Q. Z. Wang, and R. R. Alfano, “Noninvasive two-photon-excitation imaging of tryptophan distribution in highly scattering biological tissues,” Opt. Commun. 154(5-6), 383–389 (1998).
[Crossref]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Lippitz, W. Erker, H. Decker, K. E. van Holde, and T. Basché, “Two-photon excitation microscopy of tryptophan-containing proteins,” Proc. Natl. Acad. Sci. U.S.A. 99(5), 2772–2777 (2002).
[Crossref] [PubMed]

Proc. SPIE (2)

P. Sengupta, J. Balaji, S. Mukherjee, R. Philip, G. R. Kumar, and S. Maiti, “Determination of the absolute two-photon absorption cross section of tryptophan,” Proc. SPIE 4262, 336–339 (2001).
[Crossref]

A. Mikhaylov, J. R. Lindquist, P. R. Callis, B. Kohler, J. Pahapill, S. de Reguardati, R. Matt, M. Uudsemaa, A. Trummal, and A. Rebane, “Femtosecond two-photon absorption spectra and permanent electric dipole moment change of tryptophan, 2-aminopurine and related intrinsic and synthetic fluorophores,” Proc. SPIE 1069, 10069 (2017).

RSC Advances (1)

R. S. K. Lane and S. W. Magennis, “Two-photon excitation of the fluorescent nucleobase analogues 2-AP and tC,” RSC Advances 2(30), 11397–11403 (2012).
[Crossref]

Other (2)

L. M. Wilhelmsson and Y. Tor, Fluorescent Analogs of Biomolecular Building Blocks.Design and Applications (J. Wiley & Sons, INC, 2016).

G. D. Fasman, Handbook of Biochemistry and Molecular Biology, 3rd ed. (CRC Press, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1 1PA and 2PA spectra of 2AP in H2O (a), MeOH (b), DMSO (c), glycerol/H2O (d), L-trp in H2O (e), 3-MI in H2O (f), 7MG (g) in pH 7 buffer, IXP in NH4OH/H2O (h), 6MI in pH 7 buffer (i). Left vertical axis - σ2PA in GM. Right vertical axis - molar extinction, ε. The lower (upper) horizontal axis shows the 2-photon (1-photon) wavelength λ2PA (λ1PA) in nm. 1PA is shown by red lines; 2PA measured by the relative 2PEF method and the relative NLT method is shown by empty black symbols and solid blue symbols, respectively. σ2PA obtained at select λ2PA by 2PEF technique is shown by green symbols. Inserts in d, e and g show overlap between 1PA and 2PA spectral shapes.

Tables (1)

Tables Icon

Table 1 Summary of 1PA and 2PA properties of the studied chromophore-solvent systems. C is the maximum molar concentration. Quantum yield QR was measured relative to 9-chloroanthracene in DCM at 450 nm. εM is the peak molar extinction coefficient. σ 2 P A 2 P E F ( λ 2 P A ) and σ 2 P A N L T ( λ 2 P A ) are the peak σ2PA values at the 2PA wavelength (λ2PA) measured by 2PEF and NLT methods, respectively. FPS values were estimated using Eq. (1) assuming fluorophore concentration 1022 m−3 (see text).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F P S 1.24 8 L n ( 2 ) η C σ 2 P A λ 2 P A g τ M F O V ( S N R ) 2 ( P a v π h c ) 2 ,
| Δ μ | = ( 5 12 10 3 π ln 10 nc 2 h N A f 2 σ 2 P A ε M λ 1PA max ) 1 / 2 ,

Metrics